Learn R Programming

FGSG (version 1.0.2)

goscar: Graph OSCAR (FGSG)

Description

Given $A = {a_1,\dots,a_n}$, the response $y$, and a set of edges $E$, this function aims to solves $$min 1/2||Ax-y||^2 + \lambda_1||x||_1 + \lambda_2 \sum_{(i,j) in E}w_(i,j)max{|x_i|,|x_j|}$$

Usage

goscar(A, y, tp, s1, s2, RmaxIter = 100, 
	RaMaxIter = 1000, Rrho = 5, Rtau = 0.15, 
	Rwt = rep(1, length(tp)), Rtol = 0.001, 
	RaTol = 0.001, x0 = rep(0, ncol(A)))

Arguments

A
A The data matrix of size $n \times p$, each row corresponds to one sample.
y
y The response vector of length n.
tp
tp The edges vector of length 2*g (eg. (1,2,3,4) means an edge between 1 and 2, and an edge between 3 and 4, g=2 is the number of edges).
s1
s1 The $l_1$ regularization parameter, $s1 >=0$.
s2
s2 Tge grouping penatly parameter, $s2 >=0$.
RmaxIter
RmaxIter The maximum number of iterations in DC programming (default 100).
RaMaxIter
RaMaxIter The maximum number of iterations in ADMM (default 1000).
Rrho
Rrho The dual update length ofor ADMM (default 5).
Rtau
Rtau The tuning parameter for non-convex penalty (default 0.15).
Rwt
Rwt The weight and signs of edges (default rep(1,g)).
Rtol
Rtol The tolerance for convergence in DC programming (default 1e-3).
RaTol
RaTol The tolerance for convergence in ADMM (default 1e-3).
x0
x0 The returned weight vector (default rep(0,p)).

Value

  • Returned value x0 is the solution to the optimizaiton problem.

References

S.Yang, L.Yuan, Y.Lai, X.Shen, P.Wonka, and J.Ye. Feature grouping and selection over an undirected graph. KDD, 2012.

Examples

Run this code
A<-matrix(rnorm(25),5,5)
y<-rnorm(5)
tp<-c(1,2,2,3,3,4,4,5)
goscar(A,y,tp,0,0)

Run the code above in your browser using DataLab