Learn R Programming

FSA (version 0.9.6)

removal: Population estimates for k-, 3-, or 2-pass removal data.

Description

Computes estimates, with confidence intervals, of the population size and probability of capture from the number of fish removed in k-, 3-, or 2-passes in a closed population.

Usage

removal(catch, ...)

# S3 method for formula removal( catch, data, method = c("CarleStrub", "Zippin", "Seber3", "Seber2", "RobsonRegier2", "Moran", "Schnute", "Burnham"), alpha = 1, beta = 1, CS.se = c("Zippin", "alternative"), conf.level = 0.95, Tmult = 3, CIMicroFish = FALSE, ... )

# S3 method for default removal( catch, method = c("CarleStrub", "Zippin", "Seber3", "Seber2", "RobsonRegier2", "Moran", "Schnute", "Burnham"), alpha = 1, beta = 1, CS.se = c("Zippin", "alternative"), conf.level = 0.95, Tmult = 3, CIMicroFish = FALSE, just.ests = FALSE, ... )

# S3 method for removal coef(object, parm = c("all", "No", "p", "p1"), as.df = FALSE, ...)

# S3 method for removal confint( object, parm = c("all", "No", "p", "p1"), level = conf.level, conf.level = NULL, digits = getOption("digits"), verbose = FALSE, incl.est = FALSE, as.df = FALSE, ... )

# S3 method for removal summary( object, parm = c("all", "No", "p", "p1"), digits = getOption("digits"), verbose = FALSE, as.df = FALSE, ... )

Value

A list with at least the following items:

  • catch The original vector of observed catches.

  • method The method used (provided by the user).

  • lbl A descriptive label for the method used.

  • est A matrix that contains the estimates and standard errors for No and p.

In addition, if the Moran or Schnute methods are used the list will also contain

  • min.nlogLH The minimum value of the negative log-likelihood function.

  • Tmult The Tmult value sent by the user.

Arguments

catch

A numerical vector of catch at each pass, or a formula of the form ~catch.

...

Additional arguments for methods.

data

A data.frame from which the variables in the catch formula can be found. Not used if catch is not a formula.

method

A single string that identifies the removal method to use. See details.

alpha

A single numeric value for the alpha parameter in the CarleStrub method (default is 1).

beta

A single numeric value for the beta parameter in the CarleStrub method (default is 1).

CS.se

A single string that identifies whether the SE in the CarleStrub method should be computed according to Seber or Zippin.

conf.level

A single number representing the level of confidence to use for constructing confidence intervals. This is sent in the main removal function rather than confint.

Tmult

A single numeric that will be multiplied by the total catch in all samples to set the upper value for the range of population sizes when minimizing the log-likelihood and creating confidence intervals for the Moran and Schnute methods. Large values are much slower to compute, but values that are too low may result in missing the best estimate. A warning is issued if too low of a value is suspected.

CIMicroFish

A logical that indicates whether the t value used to calculate confidence intervals when method="Burnham" should be rounded to two or three decimals and whether the confidence intervals for No should be rounded to whole numbers as done in MicroFish 3.0. The default (=FALSE) is to NOT round the t values or No confidence interval. This option is provided only so that results will exactly match MicroFish results (see testing).

just.ests

Deprecated as of v0.9.6. This was primarily used when using removal with a split-and-apply approach to estimate N for multiple groups. See examples and use of incl.ests= in confint for similar functionality.

object

An object saved from removal().

parm

A specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered.

as.df

A logical that indicates whether the results of coef, confint, or summary should be returned as a data.frame. Defaults to FALSE.

level

Not used, but here for compatibility with generic confint function.

digits

A single numeric that controls the number of decimals in the output from summary and confint.

verbose

A logical that indicates whether descriptive labels should be printed from summary and if certain warnings are shown with confint.

incl.est

A logical that indicated whether the parameter point estimate should be included in the results from confint. Defaults to FALSE.

testing

The Carle-Strub method matches the examples in Carle and Strub (1978) for No, p, and the variance of No. The Carle-Strub estimates of No and p match the examples in Cowx (1983) but the SE of No does not. The Carle-Strub estimates of No match the results (for estimates that they did not reject) from Jones and Stockwell (1995) to within 1 individual in most instances and within 1% for all other instances (e.g., off by 3 individuals when the estimate was 930 individuals).

The Seber3 results for No match the results in Cowx (1983).

The Seber2 results for No, p, and the SE of No match the results in example 7.4 of Seber (2002) and in Cowx (1983).

The RobsonRegier2 results for No and the SE of NO match the results in Cowx (1983)

The Zippin method results do not match the examples in Seber (2002) or Cowx (1983) because removal uses the bias-corrected version from Carle and Strub (1978) and does not use the tables in Zippin (1958). The Zippin method is not yet trustworthy.

The Moran and Schnute methods match the examples in Schnute (1983) perfectly for all point estimates and within 0.1 units for all confidence intervals.

The Burnham method was tested against the free (gratis) Demo Version of MicroFish 3.0. Powell Wheeler used R to simulate 100, three-pass removal samples with capture probabilities between 0 and 1 and population sizes <= 1000. The Burnham method implemented here exactly matched MicroFish in all 100 trials for No and p. In addition, the CIs for No exactly matched all 100 trials when CIMicroFish=TRUE. Powell was not able to check the CIs for p because the MicroFish 'Quick Population Estimate' does not report them.

IFAR Chapter

10-Abundance from Depletion Data.

Author

Derek H. Ogle, DerekOgle51@gmail.com

A. Powell Wheeler, powell.wheeler@gmail.com

Details

The main function computes the estimates and associated standard errors, if possible, for the initial population size, No, and probability of capture, p, for eight methods chosen with method=. The possible methods are:

  • method="CarleStrub": The general weighted k-pass estimator proposed by Carle and Strub (1978). This function iteratively solves for No in equation 7 of Carle and Strub (1978).

  • method="Zippin": The general k-pass estimator generally attributed to Zippin. This function iteratively solves for No in bias corrected version of equation 3 (page 622) of Carle and Strub (1978). These results are not yet trustworthy (see Testing section below).

  • method="Seber3": The special case for k=3 estimator shown in equation 7.24 of Seber(2002).

  • method="Seber2": The special case for k=2 estimator shown on page 312 of Seber(2002).

  • method="RobsonRegier2": The special case for k=2 estimator shown by Robson and Regier (1968).

  • method="Moran": The likelihood method of Moran (1951) as implemented by Schnute (1983).

  • method="Schnute": The likelihood method of Schnute (1983) for the model that has a different probability of capture for the first sample but a constant probability of capture for all ensuing samples.

  • method="Burnham": The general k-pass estimator likelihood method created by Ken Burnham and presented by Van Deventer and Platts (1983). This method is used in the Microfish software (Van Deventer 1989).

Confidence intervals for the first five methods are computed using standard large-sample normal distribution theory. Note that the confidence intervals for the 2- and 3-pass special cases are only approximately correct if the estimated population size is greater than 200. If the estimated population size is between 50 and 200 then a 95% CI behaves more like a 90% CI.

Confidence intervals for the next two methods use likelihood ratio theory as described in Schnute (1983) and are only produced for the No parameter. Standard errors are not produced with the Moran or Schnute methods.

Confidence intervals for the last method are computed as per Ken Burnham's instructions for the Burnham Method (Jack Van Deventer, personal communication). Specifically, they are calculated with the t-statistic and No-1 degrees of freedom. Please note that the MicroFish software rounds the t-statistic before it calculates the confidence intervals about No and p. If you need the confidence interals produced by FSA::removal to duplicate MicroFish, please use CIMicroFish=TRUE.

References

Ogle, D.H. 2016. Introductory Fisheries Analyses with R. Chapman & Hall/CRC, Boca Raton, FL.

Carle, F.L. and M.R. Strub. 1978. A new method for estimating population size from removal data. Biometrics, 34:621-630.

Cowx, I.G. 1983. Review of the methods for estimating fish population size from survey removal data. Fisheries Management, 14:67-82.

Moran, P.A.P. 1951. A mathematical theory of animal trapping. Biometrika 38:307-311.

Robson, D.S., and H.A. Regier. 1968. Estimation of population number and mortality rates. pp. 124-158 in Ricker, W.E. (editor) Methods for Assessment of Fish Production in Fresh Waters. IBP Handbook NO. 3 Blackwell Scientific Publications, Oxford.

Schnute, J. 1983. A new approach to estimating populations by the removal method. Canadian Journal of Fisheries and Aquatic Sciences, 40:2153-2169.

Seber, G.A.F. 2002. The Estimation of Animal Abundance. Edward Arnold, second edition (Reprint).

van Dishoeck, P. 2009. Effects of catchability variation on performance of depletion estimators: Application to an adaptive management experiment. Masters Thesis, Simon Fraser University. [Was (is?) from http://rem-main.rem.sfu.ca/theses/vanDishoeckPier_2009_MRM483.pdf.]

Van Deventer, J.S. 1989. Microcomputer Software System for Generating Population Statistics from Electrofishing Data--User's Guide for MicroFish 3.0. USDA Forest Service, General Technical Report INT-254. 29 p. [Was (is?) from https://relicensing.pcwa.net/documents/Library/PCWA-L

Van Deventer, J.S., and W.S. Platts. 1983. Sampling and estimating fish populations from streams. Transactions of the 48th North American Wildlife and Natural Resource Conference. pp. 349-354.

See Also

See depletion for related functionality.

Examples

Run this code
## First example -- 3 passes
ct3 <- c(77,50,37)

# Carle Strub (default) method
p1 <- removal(ct3)
summary(p1)
summary(p1,verbose=TRUE)
summary(p1,parm="No")
summary(p1,parm="p")
confint(p1)
confint(p1,parm="No")
confint(p1,parm="p")

# Moran method
p2 <- removal(ct3,method="Moran")
summary(p2,verbose=TRUE)
confint(p2,verbose=TRUE)
#'
# Schnute method
p3 <- removal(ct3,method="Schnute")
summary(p3,verbose=TRUE)
confint(p3,verbose=TRUE)

# Burnham method
p4 <- removal(ct3,method="Burnham")
summary(p4)
summary(p4,verbose=TRUE)
summary(p4,parm="No")
summary(p4,parm="p")
confint(p4)
confint(p4,parm="No")
confint(p4,parm="p")
## Second example -- 2 passes
ct2 <- c(77,37)

# Seber method
p4 <- removal(ct2,method="Seber2")
summary(p4,verbose=TRUE)
confint(p4)

## Use formula with a data.frame
d <- data.frame(ct=ct3)
p1a <- removal(~ct,data=d)
summary(p1a,verbose=TRUE)
confint(p1a,incl.est=TRUE)

### Test if catchability differs between first sample and the other samples
# chi-square test statistic from  negative log-likelihoods
#   from Moran and Schnute fits (from above)
chi2.val <- 2*(p2$min.nlogLH-p3$min.nlogLH)
# p-value ... no significant difference
pchisq(chi2.val,df=1,lower.tail=FALSE)

# Another LRT example ... sample 1 from Schnute (1983)
ct4 <- c(45,11,18,8)
p2a <- removal(ct4,method="Moran")
p3a <- removal(ct4,method="Schnute")
chi2.val <- 2*(p2a$min.nlogLH-p3a$min.nlogLH)  # 4.74 in Schnute(1983)
pchisq(chi2.val,df=1,lower.tail=FALSE)         # sig diff (catchability differs)
summary(p3a)

# Demonstrate multiple groups ... data in long format
## create a dummy data frame
d <- data.frame(lake=factor(rep(c("Ash Tree","Bark","Clay"),each=5)),
                year=factor(rep(c("2010","2011","2010","2011","2010","2011"),
                                times=c(2,3,3,2,2,3))),
                pass=factor(c(1,2,1,2,3,1,2,3,1,2,1,2,1,2,3)),
                catch=c(57,34,65,34,12,54,26,9,54,27,67,34,68,35,12))
d

## note use of confint with incl.est= and as.df=
if (require(dplyr) & require(tidyr)) {
  res <- d %>%
    dplyr::group_by(interaction(lake,year)) %>%
    dplyr::group_modify(~confint(removal(~catch,data=.x),
                                 incl.est=TRUE,as.df=TRUE)) %>%
    tidyr::separate_wider_delim(1,names=c("lake","year"),delim=".") %>%
    as.data.frame() # removes tibble and grouping structure
  res
}

# Demonstrate multiple groups ... data in wide format
## create a dummy data frame ... same data as previous ... note that this is
##   not an efficient way to enter data, used here just for simple example
d2w <- rbind(data.frame(lake="Ash Tree",year=2011,pass1=65,pass2=34,pass3=12),
             data.frame(lake="Bark",year=2010,pass1=54,pass2=26,pass3=9),
             data.frame(lake="Bark",year=2011,pass1=54,pass2=27,pass3=NA),
             data.frame(lake="Clay",year=2010,pass1=67,pass2=34,pass3=NA),
             data.frame(lake="Clay",year=2011,pass1=68,pass2=35,pass3=12))
d2w

## convert to long format first
d2l <- tidyr::pivot_longer(d2w,cols=c("pass1","pass2","pass3"),
                           names_to="pass",values_to="catch")
d2l

## then same process as previous example
if (require(dplyr)) {
  res2 <- d2l %>%
    dplyr::group_by(interaction(lake,year)) %>%
    dplyr::group_modify(~confint(removal(~catch,data=.x),
                                 incl.est=TRUE,as.df=TRUE)) %>%
    tidyr::separate_wider_delim(1,names=c("lake","year"),delim=".") %>%
    as.data.frame() # removes tibble and grouping structure
  res2
}

Run the code above in your browser using DataLab