Learn R Programming

FactoMineR (version 1.34)

DMFA: Dual Multiple Factor Analysis (DMFA)

Description

Performs Dual Multiple Factor Analysis (DMFA) with supplementary individuals, supplementary quantitative variables and supplementary categorical variables.

Usage

DMFA(don, num.fact = ncol(don), scale.unit = TRUE, ncp = 5, quanti.sup = NULL, quali.sup = NULL, graph = TRUE, axes=c(1,2))

Arguments

don
a data frame with n rows (individuals) and p columns (numeric variables)
num.fact
the number of the categorical variable which allows to make the group of individuals
scale.unit
a boolean, if TRUE (value set by default) then data are scaled to unit variance
ncp
number of dimensions kept in the results (by default 5)
quanti.sup
a vector indicating the indexes of the quantitative supplementary variables
quali.sup
a vector indicating the indexes of the categorical supplementary variables
graph
boolean, if TRUE a graph is displayed
axes
a length 2 vector specifying the components to plot

Value

Returns a list including:Returns the individuals factor map and the variables factor map.

See Also

plot.DMFA, dimdesc

Examples

Run this code
## Example with the famous Fisher's iris data
res.dmfa = DMFA ( iris, num.fact = 5)

Run the code above in your browser using DataLab