## Not run:
# ## Tea example
# data(tea)
# res.mca <- MCA(tea,quanti.sup=19,quali.sup=20:36)
# summary(res.mca)
# plot(res.mca,invisible=c("var","quali.sup","quanti.sup"),cex=0.7)
# plot(res.mca,invisible=c("ind","quali.sup","quanti.sup"),cex=0.8)
# plot(res.mca,invisible=c("quali.sup","quanti.sup"),cex=0.8)
# dimdesc(res.mca)
# plotellipses(res.mca,keepvar=1:4)
# plotellipses(res.mca,keepvar="Tea")
#
# ## Hobbies example
# data(hobbies)
# res.mca <- MCA(hobbies,quali.sup=19:22,quanti.sup=23)
# plot(res.mca,invisible=c("ind","quali.sup"),hab="quali")
# plot(res.mca,invisible=c("var","quali.sup"),cex=.5,label="none")
# plot(res.mca,invisible=c("ind","var"),hab="quali")
# dimdesc(res.mca)
# plotellipses(res.mca,keepvar=1:4)
#
# ## Specific MCA: some categories are supplementary
# data (poison)
# res <- MCA (poison[,3:8],excl=c(1,3))
#
# ## Example with missing values : use the missMDA package
# require(missMDA)
# data(vnf)
# completed <- imputeMCA(vnf,ncp=2)
# res.mca <- MCA(vnf,tab.disj=completed$tab.disj)
# ## End(Not run)
Run the code above in your browser using DataLab