#------------------------------------------------
# PE Data
#------------------ -----------------
data(PE)
#correlation
continuous.PE1 <- -PE[,1]
continuous.PE <- cbind(continuous.PE1, PE[,2])
u.PE <- apply(continuous.PE, 2, rank)/(nrow(PE)+1)
z.PE <- qnorm(u.PE)
categorical.PE <- data.frame(apply(PE[, 3:5], 2, factor))
nPE <- cbind(z.PE, categorical.PE)
#-------------------------------------------------
# Discrepancy measures----------------------------
#-------------------------------------------------
#correlation matrix for mixed data
cormat.PE <- as.matrix(polycor::hetcor(nPE, std.err=FALSE))
#discrepancy measures
out.PE = discrepancy(cormat.PE, n = nrow(nPE), f3 = FALSE)
#------------------------------------------------
#------------------------------------------------
# GSS Data
#------------------ -----------------
data(GSS)
attach(GSS)
continuous.GSS <- cbind(INCOME,AGE)
continuous.GSS <- apply(continuous.GSS, 2, rank)/(nrow(GSS)+1)
z.GSS <- qnorm(continuous.GSS)
ordinal.GSS <- cbind(DEGREE,PINCOME,PDEGREE)
count.GSS <- cbind(CHILDREN,PCHILDREN)
# Transforming the count variables to ordinal
# count1 : CHILDREN
count1 = count.GSS[,1]
count1[count1 > 3] = 3
# count2: PCHILDREN
count2 = count.GSS[,2]
count2[count2 > 7] = 7
# Combining both transformed count variables
ncount.GSS = cbind(count1, count2)
# Combining ordinal and transformed count variables
categorical.GSS <- cbind(ordinal.GSS, ncount.GSS)
categorical.GSS <- data.frame(apply(categorical.GSS, 2, factor))
# combining continuous and categorical variables
nGSS = cbind(z.GSS, categorical.GSS)
#-------------------------------------------------
# Discrepancy measures----------------------------
#-------------------------------------------------
#correlation matrix for mixed data
cormat.GSS <- as.matrix(polycor::hetcor(nGSS, std.err=FALSE))
#discrepancy measures
out.GSS = discrepancy(cormat.GSS, n = nrow(nGSS), f3 = TRUE)
Run the code above in your browser using DataLab