These functions, called by paramkienerX5
, paramkienerX7
,
paramkienerX
, use 5, 7 or 11 probabilites and quantiles
to estimate the parameters of Kiener distributions.
p5, x5
are obtained with functions fiveprobs(X)
and quantile(p5)
.
p7, x7
are obtained with functions sevenprobs(X)
and quantile(p7)
.
p11, x11
are obtained with functions elevenprobs(X)
and quantile(p11)
.
The extraction of the 11 probabilities is controlled with the option ord
which can take 12 integer values, ord = 7
being the default.
Small dataset should consider ord = 5
and
large dataset can consider ord = 12
:
c(p1, 0.35, 0.50, 0.65, 1-p1)
c(p2, 0.35, 0.50, 0.65, 1-p2)
c(p1, p2, 0.35, 0.50, 0.65, 1-p2, 1-p1)
c(p1, p2, p3, 0.35, 0.50, 0.65, 1-p3, 1-p2, 1-p1)
c(p1, 0.25, 0.50, 0.75, 1-p1)
c(p2, 0.25, 0.50, 0.75, 1-p2)
c(p1, p2, 0.25, 0.50, 0.75, 1-p2, 1-p1)
c(p1, p2, p3, 0.25, 0.50, 0.75, 1-p3, 1-p2, 1-p1)
c(p1, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p1)
c(p2, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p2)
c(p1, p2, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p2, 1-p1)
c(p1, p2, p3, 0.25, 0.35, 0.50, 0.65, 0.75, 1-p3, 1-p2, 1-p1)
p5 = fiveprobs(X)
corresponds to c(p1, 0.25, 0.50, 0.75, 1-p1)
.
p7 = sevenprobs(X)
corresponds to c(p1, p2, 0.25, 0.50, 0.75, 1-p2, 1-p1)
.
The above probabilities are then transfered to the quantile
function
whose parameter type
can change significantly the extracted quantiles.
Our experience is that type = 6
is appropriate when k > 1.9
and
type = 5
is appropriate when k < 1.9
.
Other types type = 8
and type = 9
can be considered as well.
The other types should be ignored.
(Note: when k < 1.5
, algorithm algo = "reg"
returns better
results).
Parameter maxk controls the maximum allowed value for estimated parameter k.
Reasonnable values are maxk = 10, 15, 20
. Default is maxk = 10
to be consistent with regkienerLX
.