# NOT RUN {
#### load library
# }
# NOT RUN {
library(FeedbackTS)
# }
# NOT RUN {
#### load data for site 6008 (Callagiddy station)
data(rain.site.6008)
#### load data of feedback and change-in-feedback indices in 88 sites across Australia
data(rain.feedback.stats)
#### spatial coordinates of the 88 sites
coord=rain.feedback.stats[,3:4]
######## ANALYSIS OF FEEDBACK WITH A SINGLE TIME SERIES
#### build KDD objects from raw data (site 6008: Callagiddy station)
## using a threshold value equal to 25
KDD=kdd.from.raw.data(raw.data=rain.site.6008,keyday.threshold=25,nb.days=20,
col.series=5,col.date=c(2,3,4),na.rm=TRUE,filter=NULL)
#### test feedback and change in feedback with a single data series
## using the thresholded data series
## using difference of means of positive indicator values (i.e. rainfall occurrence)
## computer intensive stage
# }
# NOT RUN {
par(mfrow=c(1,2), mar=c(5.1,4.1,4.1,2.1))
feedback.test(object=KDD, test="feedback", operator="dmpiv", nb.rand=10^3, plots=TRUE)
# }
# NOT RUN {
######## ANALYSIS OF FEEDBACK WITH A SET OF TIME SERIES COLLECTED ACROSS SPACE
#### map of feedback index computed from the whole data series
par(mfrow=c(1,1), mar=c(0,0,0,0))
stat1=rain.feedback.stats[["Feedback.whole.period"]]
map.statistic(coord,stat1,cex.circles=c(3,0.2),
region=list(border="Australia",xlim=c(110,155)),
legend=list(x=c(rep(114,3),rep(123,2)),y=-c(37,39.5,42,37,39.5),
xtext=c(rep(114,3),rep(123,2))+1,ytext=-c(37,39.5,42,37,39.5),digits=2),
main="Feedback")
#### variogram analysis and kriging of feedback index
## computer intensive stage
# }
# NOT RUN {
par(mfrow=c(2,2), mar=c(5.1,4.1,4.1,2.1))
kr1=krige(coordinates=coord, statistic=stat1,
grid=list(x=seq(110,155,0.25),y=seq(-45,-11,0.25),border="Australia",
proj="+proj=lcc +lat_1=-18 +lat_2=-36 +lat0=-25 +lon_0=140",degrees=TRUE),
plots=TRUE)
# }
# NOT RUN {
#### test spatial variation in feedback index and plot test output
## computer intensive stage
# }
# NOT RUN {
kt1=krige.test(krige.output=kr1,subregion=list(x=c(138,152,152,138),y=-c(40,40,33,33)),
alternative="greater", nb.rand=2000)
par(mfrow=c(1,2), mar=c(5.1,4.1,4.1,2.1))
plot(kt1,digits=list(predict=3,pvalue=3),breaks=12)
# }
Run the code above in your browser using DataLab