Commodities: Commodity prices
Description
Commodity prices on successive business days, Chicago Exchange
These data exhibit classic randow walk behavior.
Format
The format is:
List of 5
$ gold:'data.frame': 97 obs. of 3 variables:
..$ close: num [1:97] 700 671 680 677 690 ...
..$ high : num [1:97] 714 698 683 682 692 ...
..$ low : num [1:97] 700 669 664 676 684 ...
$ feed:'data.frame': 95 obs. of 3 variables:
..$ close: num [1:95] 79 79 78.6 79.9 79.3 ...
..$ high : num [1:95] 80 79.5 79.2 79.9 79.8 ...
..$ low : num [1:95] 79 78.5 78.6 78.8 79.3 ...
$ port:'data.frame': 99 obs. of 3 variables:
..$ close: num [1:99] 57.7 56.8 57.5 57 59 ...
..$ high : num [1:99] 59.9 57.5 58 58.1 59 ...
..$ low : num [1:99] 57.2 56.4 55.1 56.8 56.4 ...
$ soy :'data.frame': 99 obs. of 3 variables:
..$ close: num [1:99] 766 790 804 794 824 ...
..$ high : num [1:99] 788 791 805 808 824 ...
..$ low : num [1:99] 764 764 778 792 809 ...
$ us :'data.frame': 100 obs. of 3 variables:
..$ close: num [1:100] 91.6 91.6 91.4 91.4 91.2 ...
..$ high : num [1:100] 91.9 91.7 91.6 91.4 91.5 ...
..$ low : num [1:100] 91.6 91.5 91.3 91.3 91.1 ...Source
I obtained these data from a broker.Details
Data from 1981. feed: April; gold: June, pork: March, us: March
Examples
Run this codedim(Commodities$gold)
dimnames(Commodities$gold)[[2]]
TimeSeriesPlot(Commodities$gold$close)
Run the code above in your browser using DataLab