dBeta: Probability density function of the beta distribution
Description
The function computes the probability density function of the beta distribution with a mean-precision parameterization.
It can also compute the probability density function of the augmented beta distribution by assigning positive probabilities to zero and/or one values and a (continuous) beta density to the interval (0,1).
Usage
dBeta(x, mu, phi, q0 = NULL, q1 = NULL)
Value
A vector with the same length as x.
Arguments
x
a vector of quantiles.
mu
the mean parameter. It must lie in (0, 1).
phi
the precision parameter. It must be a real positive value.
q0
the probability of augmentation in zero. It must lie in (0, 1). In case of no augmentation, it is NULL (default).
q1
the probability of augmentation in one. It must lie in (0, 1). In case of no augmentation, it is NULL (default).
Details
The beta distribution has density
$$f_B(x;\mu,\phi)=\frac{\Gamma{(\phi)}}{\Gamma{(\mu\phi)}\Gamma{((1-\mu)\phi)}}x^{\mu\phi-1}(1-x)^{(1-\mu)\phi-1}$$
for \(0<x<1\), where \(0<\mu<1\) identifies the mean and \(\phi>0\) is the precision parameter.
The augmented beta distribution has density
\(q_0\), if \(x=0\)
\(q_1\), if \(x=1\)
\((1-q_0-q_1)f_B(x;\mu,\phi)\), if \(0<x<1\)
where \(0<q_0<1\) identifies the augmentation in zero, \(0<q_1<1\) identifies the augmentation in one,
and \(q_0+q_1<1\).
References
Ferrari, S.L.P., Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions. Journal of Applied Statistics, 31(7), 799--815. doi:10.1080/0266476042000214501