the number of values to generate. If length(n) > 1, the length is taken to be the number required.
size
the total number of trials.
mu
the mean parameter. It must lie in (0, 1).
theta
the overdispersion parameter. It must lie in (0, 1).
phi
the precision parameter, an alternative way to specify the overdispersion parameter theta. It must be a real positive value.
p
the mixing weight. It must lie in (0, 1).
w
the normalized distance among clusters. It must lie in (0, 1).
References
Ascari, R., Migliorati, S. (2021). A new regression model for overdispersed binomial data accounting for outliers and an excess of zeros. Statistics in Medicine, 40(17), 3895--3914. doi:10.1002/sim.9005