Learn R Programming

FlowSOM (version 1.4.0)

ReadInput: Read fcs-files or flowframes

Description

Take some input and return FlowSOM object containing a matrix with the preprocessed data (compensated, transformed, scaled)

Usage

ReadInput(input, pattern = ".fcs", compensate = FALSE, spillover = NULL, transform = FALSE, toTransform = NULL, transformFunction = flowCore::logicleTransform(), scale = FALSE, scaled.center = TRUE, scaled.scale = TRUE, silent = FALSE)

Arguments

input
a flowFrame, a flowSet or an array of paths to files or directories
pattern
if input is an array of file- or directorynames, select only files containing pattern
compensate
logical, does the data need to be compensated
spillover
spillover matrix to compensate with If NULL and compensate=TRUE, we will look for $SPILL description in fcs file.
transform
logical, does the data need to be transformed
toTransform
column names or indices that need to be transformed. If NULL and transform=TRUE, column names of $SPILL description in fcs file will be used.
transformFunction
Defaults to logicleTransform()
scale
logical, does the data needs to be rescaled
scaled.center
see scale
scaled.scale
see scale
silent
if TRUE, no progress updates will be printed

Value

FlowSOM object containing the data, which can be used as input for the BuildSOM function

See Also

scale,BuildSOM

Examples

Run this code
# Read from file
fileName <- system.file("extdata","lymphocytes.fcs",package="FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
                         scale=TRUE)

# Or read from flowFrame object
ff <- flowCore::read.FCS(fileName)
ff <- flowCore::compensate(ff,ff@description$SPILL)
ff <- flowCore::transform(ff,
                 flowCore::transformList(colnames(ff@description$SPILL),
                                 flowCore::logicleTransform()))
flowSOM.res <- ReadInput(ff,scale=TRUE)

# Build the self-organizing map and the minimal spanning tree
flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
flowSOM.res <- BuildMST(flowSOM.res)

# Apply metaclustering
metacl <- MetaClustering(flowSOM.res$map$codes,
                         "metaClustering_consensus",max=10)

# Get metaclustering per cell
flowSOM.clustering <- metacl[flowSOM.res$map$mapping[,1]]    
 

Run the code above in your browser using DataLab