Some useful tools for the cross-temporal forecast reconciliation of a linearly constrained (e.g., hierarchical/grouped) multiple time series.
cttools(agg_mat, cons_mat, agg_order, tew = "sum", fh = 1, sparse = TRUE)
A list with four elements:
A vector containing information about the number of series for the
complete system (n
), for upper levels (na
) and bottom level
(nb
), the maximum aggregation order (m
), the number of factor
(p
), the partial (ks
) and total sum (kt
) of factors.
The vector of the temporal aggregation orders (in decreasing order).
The cross-temporal aggregation matrix.
The cross-temporal structural matrix.
The cross-temporal zero constraints matrix.
A (\(n_a \times n_b\)) numeric matrix representing the cross-sectional aggregation matrix. It maps the \(n_b\) bottom-level (free) variables into the \(n_a\) upper (constrained) variables.
A (\(n_a \times n\)) numeric matrix representing the cross-sectional zero constraints. It spans the null space for the reconciled forecasts.
Highest available sampling frequency per seasonal cycle (max. order of temporal aggregation, \(m\)), or a vector representing a subset of \(p\) factors of \(m\).
A string specifying the type of temporal aggregation. Options include:
"sum
" (simple summation, default), "avg
" (average),
"first
" (first value of the period), and "last
"
(last value of the period).
Forecast horizon for the lowest frequency (most temporally aggregated)
time series (default is 1
).
Option to return sparse matrices (default is TRUE
).
Cross-temporal framework:
ctboot()
,
ctbu()
,
ctcov()
,
ctlcc()
,
ctmo()
,
ctrec()
,
cttd()
,
iterec()
,
tcsrec()
Utilities:
FoReco2matrix()
,
aggts()
,
balance_hierarchy()
,
commat()
,
csprojmat()
,
cstools()
,
ctprojmat()
,
df2aggmat()
,
lcmat()
,
recoinfo()
,
res2matrix()
,
shrink_estim()
,
teprojmat()
,
tetools()
,
unbalance_hierarchy()
# Cross-temporal framework
A <- t(c(1,1)) # Aggregation matrix for Z = X + Y
m <- 4 # from quarterly to annual temporal aggregation
cttools(agg_mat = A, agg_order = m)
Run the code above in your browser using DataLab