# NOT RUN {
## create resolution III design
plan <- FrF2(8,5, factor.names=c("one","two","three","four","five"))
## add some resonse data
y <- c(2+desnum(plan)%*%c(2,3,0,0,0) +
1.5*apply(desnum(plan)[,c(1,2)],1,"prod") + rnorm(8))
## the "c()" makes y into a vector rather than a 1-column matrix
plan <- add.response(plan, y)
DanielPlot(lm(y~(.)^2,plan), alpha=0.2, half=TRUE)
## alias information
design.info(plan)
## full foldover for dealiasing all main effects
plan <- fold.design(plan)
design.info(plan)
## further data, shifted by -2
y <- c(y, desnum(plan)[9:16,1:5]%*%c(2,3,0,0,0) +
1.5*apply(desnum(plan)[9:16,c(1,2)],1,"prod") + rnorm(8))
plan <- add.response(plan, y, replace=TRUE)
linmod <- lm(y~(.)^2,plan)
DanielPlot(linmod, alpha=0.2, half=TRUE)
MEPlot(linmod)
IAPlot(linmod)
## fold on factor a only (also removes main effect aliasing here)
plan <- FrF2(8,5, factor.names=c("one","two","three","four","five"))
aliasprint(plan)
plan <- fold.design(plan, columns=1)
aliasprint(plan)
## fold a Plackett-Burman design with 11 factors
plan <- pb(12)
fold.design(plan)
# }
Run the code above in your browser using DataLab