A piecewise linear fuzzy number (PLFN) has side functions and alpha-cut bounds that linearly interpolate a given set of points (at fixed alpha-cuts).
a1
, a2
, a3
, a4
,
lower
, upper
, left
, right
:knot.n
:number of knots, a single integer value, 0 for a trapezoidal fuzzy number
knot.alpha
:alpha-cuts, increasingly sorted vector of length knot.n
with elements in [0,1]
knot.left
:nondecreasingly sorted vector of length knot.n
;
defines left alpha-cut bounds at knots
knot.right
:nondecreasingly sorted vector of length knot.n
;
defines right alpha-cut bounds at knots
If knot.n
is equal to 0 or all left and right knots lie on common lines,
then a Piecewise Linear Fuzzy Number reduces to a
'>TrapezoidalFuzzyNumber.
Note that, however, the
'>TrapezoidalFuzzyNumber
does not inherit from
'>PiecewiseLinearFuzzyNumber
for efficiency reasons.
To convert the former to the latter, call as.PiecewiseLinearFuzzyNumber
.
PiecewiseLinearFuzzyNumber
for a convenient constructor,
as.PiecewiseLinearFuzzyNumber
for conversion of objects to this class,
and piecewiseLinearApproximation
for approximation routines.
Other PiecewiseLinearFuzzyNumber-method:
Arithmetic
,
Extract
,
PiecewiseLinearFuzzyNumber
,
^,PiecewiseLinearFuzzyNumber,numeric-method
,
alphaInterval()
,
arctan2()
,
as.PiecewiseLinearFuzzyNumber()
,
as.PowerFuzzyNumber()
,
as.TrapezoidalFuzzyNumber()
,
as.character()
,
expectedInterval()
,
fapply()
,
maximum()
,
minimum()
,
necessityExceedance()
,
necessityStrictExceedance()
,
necessityStrictUndervaluation()
,
necessityUndervaluation()
,
plot()
,
possibilityExceedance()
,
possibilityStrictExceedance()
,
possibilityStrictUndervaluation()
,
possibilityUndervaluation()
# NOT RUN {
showClass("PiecewiseLinearFuzzyNumber")
showMethods(classes="PiecewiseLinearFuzzyNumber")
# }
Run the code above in your browser using DataLab