
Performs sample size planning by power analysis on RMSEA.
PA.RMSEA(df, method = c("exact.fit", "close.fit", "not.close.fit"),
H0rmsea, HArmsea, power = 0.8, alpha = 0.05)
model degrees of freedom.
a character string specifying the hypothesis test for power analysis, must be one of "exact.fit", "close.fit", or "not.close.fit"(default).
RMSEA for the null hypothesis.
RMSEA for the alternative hypothesis.
desired power value.
Type I error rate.
Return the necessary sample size that achieves the desired power.
Hancock, G. R., & Freeman, M. J. (2001). Power and sample size for the root mean square error of approximation test of not close fit in structural equation modeling. Educational and Psychological Measurement, 61(5), 741-758. doi: 10.1177/00131640121971491
MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130-149. doi: 10.1037/1082-989X.1.2.130
# NOT RUN {
PA.RMSEA(df=30,method="not.close.fit",H0rmsea=.05,HArmsea=.02,power=.8,alpha=.05)
# Reproducing Table 8 in Hancock and Freeman (2001) #
# DF=c(seq(5,100,5),seq(110,200,10),225,250)
# POWER=c(seq(.5,.99,.05),.99)
# out=matrix(NA,length(DF),length(POWER))
# for(i in 1:length(DF)){
# for(j in 1:length(POWER)){
# out[i,j]=PA.RMSEA(df=DF[i],method="not.close.fit",
# H0rmsea=.05,HArmsea=.02,power=POWER[j],alpha=.05)
# }
# }
# colnames(out)=paste("Pi=",POWER,"",sep="")
# rownames(out)=paste("df=",DF,"",sep="")
# out
# }
Run the code above in your browser using DataLab