Learn R Programming

GDAtools (version 2.1)

dimcontrib: Description of the contributions to axes

Description

Identifies the categories and individuals that contribute the most to each dimension obtained by a Multiple Correspondence Analysis.

Usage

dimcontrib(resmca, dim = c(1,2), best = TRUE)

Value

Returns a list with the following items :

var

a list of categories contributions to axes

ind

a list of individuals contributions to axes

Arguments

resmca

object of class MCA, speMCA, or csMCA

dim

numerical vector of the dimensions to describe (default is c(1,2))

best

logical. If FALSE, displays all the categories. If TRUE (default), displays only categories and individuals with contributions higher than average

Author

Nicolas Robette

Details

Contributions are sorted and assigned a positive or negative sign according to the corresponding categories or individuals coordinates, so as to facilitate interpretation.

References

Le Roux B. and Rouanet H., Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks (2010).

Le Roux B. and Rouanet H., Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht (June 2004).

See Also

tabcontrib, dimdescr, dimeta2, dimtypicality

Examples

Run this code
# specific MCA on Music example data set
data(Music)
junk <- c("FrenchPop.NA", "Rap.NA", "Rock.NA", "Jazz.NA", "Classical.NA")
mca <- speMCA(Music[,1:5], excl = junk)
# contributions to axes 1 and 2
dimcontrib(mca)

Run the code above in your browser using DataLab