Learn R Programming

GDINA (version 2.9.4)

bootSE: Calculating standard errors and variance-covariance matrix using bootstrap methods

Description

This function conducts nonparametric and parametric bootstrap to calculate standard errors of model parameters. Parametric bootstrap is only applicable to single group models.

Usage

bootSE(GDINA.obj, bootsample = 50, type = "nonparametric", randomseed = 12345)

Value

itemparm.se standard errors for item probability of success in list format

delta.se standard errors for delta parameters in list format

lambda.se standard errors for structural parameters of joint attribute distribution

boot.est resample estimates

Arguments

GDINA.obj

an object of class GDINA

bootsample

the number of bootstrap samples

type

type of bootstrap method. Can be parametric or nonparametric

randomseed

random seed for resampling

Author

Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu

References

Ma, W., & de la Torre, J. (2020). GDINA: An R Package for Cognitive Diagnosis Modeling. Journal of Statistical Software, 93(14), 1-26.

Examples

Run this code
if (FALSE) {
# For illustration, only 5 resamples are run
# results are definitely not reliable

dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA",att.dist = "higher.order")
boot.fit <- bootSE(fit,bootsample = 5,randomseed=123)
boot.fit$delta.se
boot.fit$lambda.se
}

Run the code above in your browser using DataLab