Learn R Programming

GDINA (version 2.9.4)

ecpe: Examination for the Certificate of Proficiency in English (ECPE) data

Description

Examination for the Certificate of Proficiency in English (ECPE) data (the grammar section) has been used in Henson and Templin (2007), Templin and Hoffman (2013), Feng, Habing, and Huebner (2014), and Templin and Bradshaw (2014), among others.

Usage

ecpe

Arguments

Format

A list of responses and Q-matrix with components:

dat

Responses of 2922 examinees to 28 items.

Q

The \(28 \times 3\) Q-matrix.

Author

Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu

Details

The data consists of responses of 2922 examinees to 28 items involving 3 attributes. Attribute 1 is morphosyntactic rules, Attribute 2 is cohesive rules and Attribute 3 is lexical rules.

References

Ma, W., & de la Torre, J. (2020). GDINA: An R Package for Cognitive Diagnosis Modeling. Journal of Statistical Software, 93(14), 1-26.

Feng, Y., Habing, B. T., & Huebner, A. (2014). Parameter estimation of the reduced RUM using the EM algorithm. Applied Psychological Measurement, 38, 137-150.

Henson, R. A., & Templin, J. (2007, April). Large-scale language assessment using cognitive diagnosis models. Paper presented at the annual meeting of the National Council for Measurement in Education in Chicago, Illinois.

Templin, J., & Bradshaw, L. (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies. Psychometrika, 79, 317-339.

Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32, 37-50.

Examples

Run this code
if (FALSE) {
mod1 <- GDINA(ecpe$dat,ecpe$Q)
mod1
summary(mod1)

mod2 <- GDINA(ecpe$dat,ecpe$Q,model="RRUM")
mod2
anova(mod1,mod2)
# You may compare the following results with Feng, Habing, and Huebner (2014)
coef(mod2,"rrum")

# G-DINA with hierarchical structure
# see Templin & Bradshaw, 2014
ast <- att.structure(list(c(3,2),c(2,1)),K=3)

est.gdina2 <- GDINA(ecpe$dat,ecpe$Q,model = "GDINA",
                   control = list(conv.crit = 1e-6),
                   att.str = list(c(3,2),c(2,1)))
# see Table 7 in Templin & Bradshaw, 2014
summary(est.gdina2)
}

Run the code above in your browser using DataLab