Learn R Programming

GDINA (version 2.9.4)

modelfit: Model fit statistics

Description

Calculate various absolute model-data fit statistics

Usage

modelfit(GDINA.obj, CI = 0.9, ItemOnly = FALSE)

Arguments

GDINA.obj

An estimated model object of class GDINA

CI

numeric value from 0 to 1 indicating the range of the confidence interval for RMSEA. Default returns the 90% interval.

ItemOnly

should joint attribute distribution parameters be considered? Default = FALSE. See Ma (2019).

Author

Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu

Details

Various model-data fit statistics including M2 statistic for G-DINA model with dichotmous responses (Liu, Tian, & Xin, 2016; Hansen, Cai, Monroe, & Li, 2016) and for sequential G-DINA model with graded responses (Ma, 2020). It also calculates SRMSR and RMSEA2.

References

Hansen, M., Cai, L., Monroe, S., & Li, Z. (2016). Limited-information goodness-of-fit testing of diagnostic classification item response models. British Journal of Mathematical and Statistical Psychology. 69, 225--252.

Liu, Y., Tian, W., & Xin, T. (2016). An Application of M2 Statistic to Evaluate the Fit of Cognitive Diagnostic Models. Journal of Educational and Behavioral Statistics, 41, 3-26.

Ma, W. (2020). Evaluating the fit of sequential G-DINA model using limited-information measures. Applied Psychological Measurement, 44, 167-181.

Ma, W., & de la Torre, J. (2020). GDINA: An R Package for Cognitive Diagnosis Modeling. Journal of Statistical Software, 93(14), 1-26.

Maydeu-Olivares, A. (2013). Goodness-of-Fit Assessment of Item Response Theory Models. Measurement, 11, 71-101.

Examples

Run this code
if (FALSE) {
dat <- sim10GDINA$simdat
Q <- sim10GDINA$simQ
mod1 <- GDINA(dat = dat, Q = Q, model = "DINA")
modelfit(mod1)
}

Run the code above in your browser using DataLab