Learn R Programming

GDINA (version 2.9.4)

simDTM: Simulating data for diagnostic tree model

Description

Data generation for diagnostic tree model

Usage

simDTM(N, Qc, gs.parm, Tmatrix, red.delta = NULL, att.gr = NULL)

Arguments

N

sample size

Qc

Association matrix between attributes (column) and PSEUDO items (row); The first column is item number and the second column is the pseudo item number for each item. If a pseudo item has more than one nonzero categories, more than one rows are needed.

gs.parm

the same as the gs.parm in simGDINA function in the GDINA package. It is a list with the same number of elements as the number of rows in the Qc matrix

Tmatrix

mapping matrix showing the relation between the OBSERVED responses (rows) and the PSEDUO items (columns); The first column gives the observed responses.

red.delta

reduced delta parameters using logit link function

att.gr

attribute group indicator

Examples

Run this code
if (FALSE) {
K=5
g=0.2
item.no <- rep(1:6,each=4)
# the first node has three response categories: 0, 1 and 2
node.no <- rep(c(1,1,2,3),6)
Q1 <- matrix(0,length(item.no),K)
Q2 <- cbind(7:(7+K-1),rep(1,K),diag(K))
for(j in 1:length(item.no)) {
  Q1[j,sample(1:K,sample(3,1))] <- 1
}
Qc <- rbind(cbind(item.no,node.no,Q1),Q2)
Tmatrix.set <- list(cbind(c(0,1,2,3,3),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
cbind(c(0,1,2,3,4),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
cbind(c(0,1),c(0,1)))
Tmatrix <- Tmatrix.set[c(1,1,1,1,1,1,rep(3,K))]
sim <- simDTM(N=2000,Qc=Qc,gs.parm=matrix(0.2,nrow(Qc),2),Tmatrix=Tmatrix)
est <- DTM(dat=sim$dat,Qc=Qc,Tmatrix = Tmatrix)
}

Run the code above in your browser using DataLab