# \donttest{
es <- 0.99
beta <- prop.table(1:5)
xi <- 0
w <- 500
p <- 2:6
x <- DCES_demand (
es = es,
beta = beta,
xi = xi,
w = w,
p = p
)
u <- DCES(es = es,
beta = beta,
xi = xi,
x = x)
SCES(es = es,
alpha = 1,
beta = beta,
x = x)
DCES_compensated_demand(
es = es,
beta = beta,
xi = xi,
u = u,
p = p
)
DCES_compensated_demand(
es = es,
beta = beta,
xi = seq(10, 50, 10),
u = u,
p = p
)
#### A 2-by-2 general equilibrium model
#### with a DCES utility function.
ge <- sdm2(
A = function(state) {
a.consumer <- DCES_demand(
es = 2, beta = c(0.2, 0.8), xi = c(1000, 500),
w = state$w[1], p = state$p
)
a.firm <- c(1.1, 0)
cbind(a.consumer, a.firm)
},
B = diag(c(0, 1)),
S0Exg = matrix(c(
3500, NA,
NA, NA
), 2, 2, TRUE),
names.commodity = c("corn", "iron"),
names.agent = c("consumer", "firm"),
numeraire = "corn"
)
ge$p
ge$z
ge$A
ge$D
#### A 3-by-3 general equilibrium model
#### with a DCES utility function.
lab <- 1 # the amount of labor supplied by each laborer
n.laborer <- 100 # the number of laborers
ge <- sdm2(
A = function(state) {
a.firm.corn <- CD_A(alpha = 1, Beta = c(0, 0.5, 0.5), state$p)
a.firm.iron <- CD_A(alpha = 5, Beta = c(0, 0.5, 0.5), state$p)
a.laborer <- DCES_demand(
es = 0, beta = c(0, 1, 0), xi = c(0.1, 0, 0),
w = state$w[3] / n.laborer, p = state$p
)
cbind(a.firm.corn, a.firm.iron, a.laborer)
},
B = matrix(c(
1, 0, 0,
0, 1, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, NA, lab * n.laborer
), 3, 3, TRUE),
names.commodity = c("corn", "iron", "lab"),
names.agent = c("firm.corn", "firm.iron", "laborer"),
numeraire = "lab",
priceAdjustmentVelocity = 0.1
)
ge$z
ge$A
ge$D
# }
Run the code above in your browser using DataLab