# \donttest{
#### an example with a nested intertemporal utility function
np <- 5 # the number of economic periods
n <- 3 * np - 1 # the number of commodity kinds
m <- 2 * (np - 1) + 1 # the number of agent kinds
names.commodity <- c(
paste0("corn", 1:np),
paste0("iron", 1:np),
paste0("lab", 1:(np - 1))
)
names.agent <- c(
paste0("firm.corn", 1:(np - 1)),
paste0("firm.iron", 1:(np - 1)),
"consumer"
)
## the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100
S0Exg["corn1", "consumer"] <- 25
S0Exg["iron1", "consumer"] <- 100
# the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("corn", k + 1), paste0("firm.corn", k)] <-
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1
}
dstl.firm.corn <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {
dstl.firm.corn[[k]] <- node_new(
"prod",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)
)
dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)
)
}
dst.consumer <- node_new(
"util",
type = "CD", alpha = 1,
beta = prop.table(rep(1, np)),
paste0("cc", 1:np)
)
for (k in 1:np) {
node_set(
dst.consumer,
paste0("cc", k),
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("corn", k), paste0("iron", k)
)
}
ge <- sdm2(
A = c(dstl.firm.corn, dstl.firm.iron, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE
)
ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
#### an example with a non-nested intertemporal utility function
np <- 3 # the number of economic periods
## There are np types of corn, np-1 types of iron and np-1 types of labor.
## There are np-1 corn firms, np-2 iron firms and one consumer.
n <- 3 * np - 2
m <- 2 * np - 2
names.commodity <- c(
paste0("corn", 1:np),
paste0("iron", 1:(np - 1)),
paste0("lab", 1:(np - 1))
)
names.agent <- c(
paste0("firm.corn", 1:(np - 1)),
paste0("firm.iron", 1:(np - 2)),
"consumer"
)
## the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
S0Exg[paste0("lab", 1:(np - 1)), "consumer"] <- 100
S0Exg["corn1", "consumer"] <- 25
S0Exg["iron1", "consumer"] <- 100
# the output coefficient matrix.
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(np - 1)) {
B[paste0("corn", k + 1), paste0("firm.corn", k)] <- 1
}
for (k in 1:(np - 2)) {
B[paste0("iron", k + 1), paste0("firm.iron", k)] <- 1
}
dstl.firm.corn <- dstl.firm.iron <- list()
for (k in 1:(np - 1)) {
dstl.firm.corn[[k]] <- node_new(
"prod",
type = "CD", alpha = 1, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)
)
}
for (k in seq_along(np:(2 * np - 3))) {
dstl.firm.iron[[k]] <- node_new(
"prod",
type = "CD", alpha = 2, beta = c(0.5, 0.5),
paste0("iron", k), paste0("lab", k)
)
}
dst.consumer <- node_new(
"util",
type = "CD", alpha = 1, beta = prop.table(rep(1, np)),
paste0("corn", 1:np)
)
ge <- sdm2(
A = c(dstl.firm.corn, dstl.firm.iron, dst.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
ts = TRUE
)
ge$p
ge$z
ge$D
ge$S
ge$DV
ge$SV
#### an example of Zeng (1995, page 227)
ic1 <- 1 / 10 # input coefficient
ic2 <- 1 / 7
dc1 <- 2 / 3 # depreciation coefficient
dc2 <- 9 / 10
ge <- sdm2(
A = {
# corn, iron1, iron2, iron3, iron4
a1.1 <- c(0, ic1, 0, 0, 0)
a1.2 <- c(0, ic2, 0, 0, 0)
a2.1 <- c(0, 0, ic1, 0, 0)
a2.2 <- c(0, 0, ic2, 0, 0)
a3.1 <- c(0, 0, 0, ic1, 0)
a3.2 <- c(0, 0, 0, ic2, 0)
a4.1 <- c(0, 0, 0, 0, ic1)
a4.2 <- c(0, 0, 0, 0, ic2)
a.consumer <- c(1, 0, 0, 0, 0)
cbind(a1.1, a1.2, a2.1, a2.2, a3.1, a3.2, a4.1, a4.2, a.consumer)
},
B = {
b1.1 <- c(1, 0, ic1 * dc1, 0, 0)
b1.2 <- c(1, 0, ic2 * dc2, 0, 0)
b2.1 <- c(1, 0, 0, ic1 * dc1, 0)
b2.2 <- c(1, 0, 0, ic2 * dc2, 0)
b3.1 <- c(1, 0, 0, 0, ic1 * dc1)
b3.2 <- c(1, 0, 0, 0, ic2 * dc2)
b4.1 <- c(1, 0, 0, 0, 0)
b4.2 <- c(1, 0, 0, 0, 0)
b.consumer <- c(0, 0, 0, 0, 0)
cbind(b1.1, b1.2, b2.1, b2.2, b3.1, b3.2, b4.1, b4.2, b.consumer)
},
S0Exg = {
tmp <- matrix(NA, 5, 9)
tmp[2, 9] <- 100
tmp
},
names.commodity = c("corn", paste0("iron", 1:4)),
names.agent = c(paste0("firm", 1:8), "consumer"),
numeraire = "corn",
policy = makePolicyMeanValue(30),
priceAdjustmentVelocity = 0.05,
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE
)
matplot(ge$ts.z, type = "l")
ge$p
ge$z
ge$D
ge$S
# }
Run the code above in your browser using DataLab