# \donttest{
## The firm supplies non-rival services.
dst.firm <- node_new(
"non-rival services",
type = "Leontief", a = 1,
"labor"
)
dst.consumer1 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.75, 0.25),
"serv1", "labor"
)
dst.consumer2 <- node_new(
"util",
type = "SCES", es = 1, # es = 0
alpha = 1, beta = c(0.5, 0.5),
"serv2", "labor"
)
ge <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(
1, 0, 0,
1, 0, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 60, 60
), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor"
)
ge$p # Lindahl prices
ge$z
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
## Computing the uniform price of the non-rival services
## by transfer payment between consumers.
ge <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(
1, 0, 0,
1, 0, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 60, 60
), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = function(A, state) {
# A[[1]]$last.s is the previous labor supply of consumer1.
if (is.null(A[[1]]$last.s)) A[[1]]$last.s <- 60
p <- state$p / state$p[3]
last.DV <- dg(p) %*% state$last.A %*% dg(state$last.z)
transfer.payment <- last.DV[1, 2] - mean(c(last.DV[1, 2], last.DV[2, 3]))
A[[1]]$last.s <- state$S[3, 2] <- A[[1]]$last.s *
ratio_adjust((60 + transfer.payment) / A[[1]]$last.s, 0.2)
state$S[3, 3] <- 120 - state$S[3, 2]
state
}
)
# Taking transfer payment into account, the uniform price of the non-rival services is 0.5.
ge$p
addmargins(ge$D, 2)
addmargins(ge$S, 2)
addmargins(ge$DV)
ge2 <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(
1, 0, 0,
1, 0, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 80, 40
), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor"
)
ge2$p
addmargins(ge2$D, 2)
addmargins(ge2$S, 2)
addmargins(ge2$DV)
## Calculate a stationary state with price regulation.
## Both services have the same price and service 2 is oversupplied.
pcss <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(
1, 0, 0,
1, 0, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 60, 60
), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = function(state) {
state$p[2] <- state$p[1]
state
},
maxIteration = 1,
numberOfPeriods = 200,
depreciationCoef = 0,
ts = TRUE
)
pcss$p
addmargins(pcss$D, 2)
addmargins(pcss$S, 2)
matplot(pcss$ts.q, type = "l")
matplot(pcss$ts.z, type = "l")
matplot(pcss$ts.p, type = "l")
##
pcss <- sdm2(
A = list(dst.firm, dst.consumer1, dst.consumer2),
B = matrix(c(
1, 0, 0,
1, 0, 0,
0, 0, 0
), 3, 3, TRUE),
S0Exg = matrix(c(
NA, NA, NA,
NA, NA, NA,
NA, 50, 50
), 3, 3, TRUE),
names.commodity = c("serv1", "serv2", "labor"),
names.agent = c("firm", "consumer1", "consumer2"),
numeraire = "labor",
policy = list(
function(state) {
state$p[1:2] <- sum(state$p[1:2] * c(0.8, 0.2))
state
},
makePolicyMeanValue()
),
maxIteration = 1,
numberOfPeriods = 1000,
ts = TRUE
)
pcss$p
addmargins(pcss$D, 2)
addmargins(pcss$S, 2)
addmargins(pcss$DV)
addmargins(pcss$SV)
matplot(pcss$ts.q, type = "l")
matplot(pcss$ts.z, type = "l")
matplot(pcss$ts.p, type = "l")
# }
Run the code above in your browser using DataLab