# \donttest{
## When beta.consumer[1]==0, beta.consumer[2:3]>0, labor.first[1]>0, labor.first[2:3]==0,
## this model is actually the Diamond model. However, the division of periods is
## slightly different from the Diamond model.
ng <- 15 # the number of generations
alpha.firm <- 2 # the efficient parameter of firms
beta.prod.firm <- 0.4 # the product (i.e. capital) share parameter of firms
beta.consumer <- c(0, 0.8, 0.2) # the share parameter of consumers
gr.laborer <- 0.03 # the population growth rate
labor.first <- c(100, 0, 0) # the labor supply of the first generation
labor.last <- 100 * (1 + gr.laborer)^((ng - 1):ng) # the labor supply of the last generation
y1 <- 8 # the initial product supply
f <- function() {
names.commodity <- c(paste0("prod", 1:(ng + 2)), paste0("lab", 1:(ng + 1)))
names.agent <- c(paste0("firm", 1:(ng + 1)), paste0("consumer", 1:ng))
n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds
# the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(ng - 1)) {
S0Exg[paste0("lab", k:(k + 2)), paste0("consumer", k)] <- labor.first * (1 + gr.laborer)^(k - 1)
}
S0Exg[paste0("lab", ng:(ng + 1)), paste0("consumer", ng)] <- labor.last
S0Exg["prod1", "consumer1"] <- y1
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:(ng + 1)) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
dstl.consumer <- list()
for (k in 1:ng) {
dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer,
paste0("prod", k:(k + 2))
)
}
dstl.firm <- list()
for (k in 1:(ng + 1)) {
dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = alpha.firm,
beta = c(beta.prod.firm, 1 - beta.prod.firm),
paste0("prod", k), paste0("lab", k)
)
}
ge <- sdm2(
A = c(dstl.firm, dstl.consumer),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1",
priceAdjustmentVelocity = 0.05
)
cat("ge$p:\n")
print(ge$p)
cat("ge$z:\n")
print(ge$z)
invisible(ge)
}
ge <- f()
# the growth rates of prices
growth_rate(ge$p[paste0("prod", 1:ng)]) + 1
growth_rate(ge$p[paste0("lab", 1:ng)]) + 1
# the steady-state growth rate of prices in the Diamond model
beta.consumer[3] * (1 - beta.prod.firm) / beta.prod.firm / (1 + gr.laborer)
# the output-labor ratios
ge$z[paste0("firm", 1:ng)] / rowSums(ge$S)[paste0("lab", 1:ng)]
# the steady-state output-labor ratio in the Diamond model
alpha.firm^(1 / (1 - beta.prod.firm)) * (beta.consumer[3] * (1 - beta.prod.firm) /
(1 + gr.laborer))^(beta.prod.firm / (1 - beta.prod.firm))
# the captial-labor ratios
rowSums(ge$D[paste0("prod", 1:ng), paste0("firm", 1:ng)]) /
rowSums(ge$S[paste0("lab", 1:ng), paste0("consumer", 1:ng)])
# the steady-state captial-labor ratio in the Diamond model
alpha.firm^(1 / (1 - beta.prod.firm)) * (beta.consumer[3] * (1 - beta.prod.firm)
/ (1 + gr.laborer))^(1 / (1 - beta.prod.firm))
##
ng <- 15
alpha.firm <- 2
beta.prod.firm <- 0.5
beta.consumer <- c(1, 1, 1) / 3
labor.first <- c(50, 50, 0)
labor.last <- c(50, 50)
y1 <- 8
gr.laborer <- 0
f()
#### Assume that consumers live for two periods and consume labor (i.e., leisure).
ng <- 10 # the number of generations
alpha.firm <- 2 # the efficient parameter of firms
beta.prod.firm <- 0.5 # the product (i.e. capital) share parameter of firms
beta.consumer <- prop.table(c(
lab1 = 1, lab2 = 1,
prod1 = 1, prod2 = 1
)) # the share parameter of consumers
labor <- c(100, 0) # the labor supply of each generation
y1 <- 8 # the initial product supply
names.commodity <- c(paste0("lab", 1:(ng + 1)), paste0("prod", 1:(ng + 1)))
names.agent <- c(paste0("consumer", 1:ng), paste0("firm", 1:ng))
n <- length(names.commodity) # the number of commodity kinds
m <- length(names.agent) # the number of agent kinds
# the exogenous supply matrix.
S0Exg <- matrix(NA, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:ng) {
S0Exg[paste0("lab", k:(k + 1)), paste0("consumer", k)] <- labor
}
if (labor[2] == 0) S0Exg[paste0("lab", ng + 1), paste0("consumer", ng)] <- labor[1]
S0Exg["prod1", "consumer1"] <- y1
B <- matrix(0, n, m, dimnames = list(names.commodity, names.agent))
for (k in 1:ng) {
B[paste0("prod", k + 1), paste0("firm", k)] <- 1
}
dstl.consumer <- list()
for (k in 1:ng) {
dstl.consumer[[k]] <- node_new(
"util",
type = "CD", alpha = 1,
beta = beta.consumer, # prop.table(c(1e-5,1e-5,0.5,0.5)),
paste0("lab", k:(k + 1)), paste0("prod", k:(k + 1))
)
}
# Assume that consumers live for three periods.
# dstl.consumer <- list()
# for (k in 1:(ng - 1)) {
# dstl.consumer[[k]] <- node_new(
# "util",
# type = "CD", alpha = 1,
# beta = rep(1 / 6, 6),
# paste0("lab", k:(k + 2)), paste0("prod", k:(k + 2))
# )
# }
#
# dstl.consumer[[ng]] <- node_new(
# "util",
# type = "CD", alpha = 1,
# beta = rep(1 / 4, 4),
# paste0("lab", ng:(ng + 1)), paste0("prod", ng:(ng + 1))
# )
dstl.firm <- list()
for (k in 1:ng) {
dstl.firm[[k]] <- node_new(
"prod",
type = "CD", alpha = alpha.firm,
beta = c(1 - beta.prod.firm, beta.prod.firm),
paste0("lab", k), paste0("prod", k)
)
}
ge <- sdm2(
A = c(dstl.consumer, dstl.firm),
B = B,
S0Exg = S0Exg,
names.commodity = names.commodity,
names.agent = names.agent,
numeraire = "lab1"
)
ge$z
growth_rate(ge$p[paste0("prod", 1:ng)]) + 1
growth_rate(ge$p[paste0("lab", 1:ng)]) + 1
ge$p[paste0("prod", 1:ng)] / ge$p[paste0("lab", 1:ng)]
# }
Run the code above in your browser using DataLab