p <- 100 # number of variables
n <- 50 # sample size
###############################
# Simulate data
###############################
simulation <- simulateData(G = p, etaA = 0.02, n = n, r = 1)
data <- simulation$data[[1L]]
###############################
# Split into train/test sets
###############################
testindex <- sample(1L:n, 10L)
train <- data[-testindex,,drop = FALSE]
stdTrain <- scale(x = train, center = TRUE, scale = TRUE)
test <- data[testindex,,drop = FALSE]
stdTest <- scale(x = test, center = TRUE, scale = TRUE)
###############################
# Calculate total prediction
# errors for all candidate
# lambda and p-value cutoffs
###############################
lambda.array <- seq(from = 0.1, to = 5, length = 10) * (n - 1.0)
pcut.array <- seq(from = 0.01, to = 0.05, by = 0.01)
tpe <- lambda.pcut.cv1(train = stdTrain,
test = stdTest,
lambda = lambda.array,
pcut = pcut.array)
Run the code above in your browser using DataLab