# NOT RUN {
# small function to display plots only if it's interactive
p_ <- GGally::print_if_interactive
invisible(lapply(c("ggplot2", "maps", "network", "sna"), base::library, character.only = TRUE))
## Example showing great circles on a simple map of the USA
## http://flowingdata.com/2011/05/11/how-to-map-connections-with-great-circles/
# }
# NOT RUN {
airports <- read.csv("http://datasets.flowingdata.com/tuts/maparcs/airports.csv", header = TRUE)
rownames(airports) <- airports$iata
# select some random flights
set.seed(1234)
flights <- data.frame(
origin = sample(airports[200:400, ]$iata, 200, replace = TRUE),
destination = sample(airports[200:400, ]$iata, 200, replace = TRUE)
)
# convert to network
flights <- network(flights, directed = TRUE)
# add geographic coordinates
flights %v% "lat" <- airports[ network.vertex.names(flights), "lat" ]
flights %v% "lon" <- airports[ network.vertex.names(flights), "long" ]
# drop isolated airports
delete.vertices(flights, which(degree(flights) < 2))
# compute degree centrality
flights %v% "degree" <- degree(flights, gmode = "digraph")
# add random groups
flights %v% "mygroup" <- sample(letters[1:4], network.size(flights), replace = TRUE)
# create a map of the USA
usa <- ggplot(map_data("usa"), aes(x = long, y = lat)) +
geom_polygon(aes(group = group), color = "grey65",
fill = "#f9f9f9", size = 0.2)
# overlay network data to map
p <- ggnetworkmap(
usa, flights, size = 4, great.circles = TRUE,
node.group = mygroup, segment.color = "steelblue",
ring.group = degree, weight = degree
)
p_(p)
## Exploring a community of spambots found on Twitter
## Data by Amos Elberg: see ?twitter_spambots for details
data(twitter_spambots)
# create a world map
world <- fortify(map("world", plot = FALSE, fill = TRUE))
world <- ggplot(world, aes(x = long, y = lat)) +
geom_polygon(aes(group = group), color = "grey65",
fill = "#f9f9f9", size = 0.2)
# view global structure
p <- ggnetworkmap(world, twitter_spambots)
p_(p)
# domestic distribution
p <- ggnetworkmap(net = twitter_spambots)
p_(p)
# topology
p <- ggnetworkmap(net = twitter_spambots, arrow.size = 0.5)
p_(p)
# compute indegree and outdegree centrality
twitter_spambots %v% "indegree" <- degree(twitter_spambots, cmode = "indegree")
twitter_spambots %v% "outdegree" <- degree(twitter_spambots, cmode = "outdegree")
p <- ggnetworkmap(
net = twitter_spambots,
arrow.size = 0.5,
node.group = indegree,
ring.group = outdegree, size = 4
) +
scale_fill_continuous("Indegree", high = "red", low = "yellow") +
labs(color = "Outdegree")
p_(p)
# show some vertex attributes associated with each account
p <- ggnetworkmap(
net = twitter_spambots,
arrow.size = 0.5,
node.group = followers,
ring.group = friends,
size = 4,
weight = indegree,
label.nodes = TRUE, vjust = -1.5
) +
scale_fill_continuous("Followers", high = "red", low = "yellow") +
labs(color = "Friends") +
scale_color_continuous(low = "lightgreen", high = "darkgreen")
p_(p)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab