# Small function to display plots only if it's interactive
p_ <- GGally::print_if_interactive
if (require(survival) && require(scales)) {
lung <- survival::lung
sf.lung <- survival::survfit(Surv(time, status) ~ 1, data = lung)
p_(ggsurv(sf.lung))
# Multiple strata examples
sf.sex <- survival::survfit(Surv(time, status) ~ sex, data = lung)
pl.sex <- ggsurv(sf.sex)
p_(pl.sex)
# Adjusting the legend of the ggsurv fit
p_(pl.sex +
ggplot2::guides(linetype = "none") +
ggplot2::scale_colour_discrete(
name = "Sex",
breaks = c(1, 2),
labels = c("Male", "Female")
))
# Multiple factors
lung2 <- dplyr::mutate(lung, older = as.factor(age > 60))
sf.sex2 <- survival::survfit(Surv(time, status) ~ sex + older, data = lung2)
pl.sex2 <- ggsurv(sf.sex2)
p_(pl.sex2)
# Change legend title
p_(pl.sex2 + labs(color = "New Title", linetype = "New Title"))
# We can still adjust the plot after fitting
kidney <- survival::kidney
sf.kid <- survival::survfit(Surv(time, status) ~ disease, data = kidney)
pl.kid <- ggsurv(sf.kid, plot.cens = FALSE)
p_(pl.kid)
# Zoom in to first 80 days
p_(pl.kid + ggplot2::coord_cartesian(xlim = c(0, 80), ylim = c(0.45, 1)))
# Add the diseases names to the plot and remove legend
p_(pl.kid +
ggplot2::annotate(
"text",
label = c("PKD", "Other", "GN", "AN"),
x = c(90, 125, 5, 60),
y = c(0.8, 0.65, 0.55, 0.30),
size = 5,
colour = scales::hue_pal(
h = c(0, 360) + 15,
c = 100,
l = 65,
h.start = 0,
direction = 1
)(4)
) +
ggplot2::guides(color = "none", linetype = "none"))
}
Run the code above in your browser using DataLab