set.seed(1)
n = 1000
xvts=list()
xvts[[1]] = matrix(rnorm(5*n, mean=0, sd=2), nrow=n, ncol=5)
xvts[[2]] = matrix(rnorm(5*n, mean=0, sd=2), nrow=n, ncol=5)
lambdaParams=list()
lambdaParams[[1]] = c(0.5, -0.5)
lambdaParams[[2]] = c(0.3, 0.1)
# Simulate the GNARX using the exogenous variables xvts with associated parameters lambdaParams
Y_data <- GNARXsim(n=n, net=GNAR::fiveNet, alphaParams=list(c(rep(0.2,5))), betaParams=list(c(0.5)),
sigma=1, xvts=xvts, lambdaParams=lambdaParams)
#Design matrix to fit GNARX(2,[1,1]) to the fiveVTS data
Xdesign <- GNARXdesign(vts = Y_data, net = GNAR::fiveNet, globalalpha = TRUE, alphaOrder = 1,
betaOrder = 1, xvts = xvts, lambdaOrder = c(1,1))
Xdesign
Run the code above in your browser using DataLab