Learn R Programming

GPArotation (version 2024.3-1)

00.GPArotation: Gradient Projection Algorithms for Factor Rotation

Description

GPA Rotation for Factor Analysis

The GPArotation package contains functions for the rotation of factor loadings matrices. The functions implement Gradient Projection (GP) algorithms for orthogonal and oblique rotation. Additionally, a number of rotation criteria are provided. The GP algorithms minimize the rotation criterion function, and provide the corresponding rotation matrix. For oblique rotation, the covariance / correlation matrix of the factors is also provided. The rotation criteria implemented in this package are described in Bernaards and Jennrich (2005). Theory of the GP algorithm is described in Jennrich (2001, 2002) publications.

Additionally 2 rotation methods are provided that do not rely on GP (eiv and echelon)

Package:GPArotation
Depends:R (>= 2.0.0)
License:GPL Version 2.
URL:https://optimizer.r-forge.r-project.org/GPArotation_www/

Index of functions:

Wrapper functions that include random starts option

GPFRSorthOrthogonal rotation with random starts
GPFRSorthOblique rotation with random starts

Gradient Projection Rotation Algorithms (code unchanged since 2008)

GPForthOrthogonal rotation function
GPForthOblique rotation function

Utility functions

Random.StartGenerate random a starting matrix
NormalizingWeightKaiser normalization (not exported from NAMESPACE)
print.GPArotationPrint results (S3 level function)
summary.GPArotationSummary of results (S3 level function)

Rotations

obliminOblimin rotation
quartiminQuartimin rotation
targetTOrthogonal Target rotation
targetQOblique Target rotation
pstTOrthogonal Partially Specified Target rotation
pstQOblique Partially Specified Target rotation
oblimaxOblimax rotation
entropyMinimum Entropy rotation
quartimaxQuartimax rotation
VarimaxVarimax rotation
simplimaxSimplimax rotation
bentlerTOrthogonal Bentler's Invariant Pattern Simplicity rotation
bentlerQOblique Bentler's Invariant Pattern Simplicity rotation
tandemIThe Tandem Criteria Principle I rotation
tandemIIThe Tandem Criteria Principle II rotation
geominTOrthogonal Geomin rotation
geominQOblique Geomin rotation
bigeominTOrthogonal Bi-Geomin rotation
bigeominQOblique Bi-Geomin rotation
cfTOrthogonal Crawford-Ferguson Family rotation
cfQOblique Crawford-Ferguson Family rotation
equamaxEquamax rotation
parsimaxParsimax rotation
infomaxTOrthogonal Infomax rotation
infomaxQOblique Infomax rotation
mccammonMcCammon Minimum Entropy Ratio rotation
variminVarimin rotation
bifactorTOrthogonal Bifactor rotation
bifactorQOblique Bifactor rotation
eivErrors-in-Variables rotation
echelonEchelon rotation

vgQ routines to compute value and gradient of the criterion (not exported from NAMESPACE)

vgQ.obliminOblimin vgQ
vgQ.quartiminQuartimin vgQ
vgQ.targetTarget vgQ
vgQ.pstPartially Specified Target vgQ
vgQ.oblimaxOblimax vgQ
vgQ.entropyMinimum Entropy vgQ
vgQ.quartimaxQuartimax vgQ
vgQ.varimaxVarimax vgQ
vgQ.simplimaxSimplimax vgQ
vgQ.bentlerBentler's Invariant Pattern Simplicity vgQ
vgQ.tandemIThe Tandem Criteria Principle I vgQ
vgQ.tandemIIThe Tandem Criteria Principle II vgQ
vgQ.geominGeomin vgQ
vgQ.bigeominBi-Geomin vgQ
vgQ.cfCrawford-Ferguson Family vgQ
vgQ.infomaxInfomax vgQ
vgQ.mccammonMcCammon Minimum Entropy Ratio vgQ
vgQ.variminVarimin vgQ
vgQ.bifactorBifactor vgQ

Data sets included in the GPArotation package

HarmanInitial factor loading matrix for Harman's 8 physical variables
Thurstonebox20 and box26 initial factor loadings matrices
WansbeekMeijerNetherlands TV viewership

Arguments

Author

Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert.

Code is modified from original source splusfunctions.net available at https://optimizer.r-forge.r-project.org/GPArotation_www/.

References

The software reference is

Bernaards, C.A. and Jennrich, R.I. (2005) Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement, 65, 676--696.

Theory of gradient projection algorithms may be found in:

Jennrich, R.I. (2001). A simple general procedure for orthogonal rotation. Psychometrika, 66, 289--306.

Jennrich, R.I. (2002). A simple general method for oblique rotation. Psychometrika, 67, 7--19.

See Also

GPFRSorth, GPFRSoblq, rotations, vgQ