Learn R Programming

GSA (version 1.03.2)

GSA.genescores: Individual gene scores from a gene set analysis

Description

Compute individual gene scores from a gene set analysis

Usage

GSA.genescores(geneset.number, genesets,  GSA.obj,  genenames, negfirst=FALSE)

Arguments

geneset.number

Number indicating which gene set is to examined

genesets

The gene set collection

GSA.obj

Object returned by function GSA

genenames

Vector of gene names for gene in expression dataset

negfirst

Should negative genes be listed first? Default FALSE

Value

A list with components

res

Matrix of gene names and gene scores (eg t-statistics) for each gene in the gene set

,

Details

Compute individual gene scores from a gene set analysis. Useful for looking ``inside'' a gene set that has been called significant by GSA.

References

Efron, B. and Tibshirani, R. On testing the significance of sets of genes. Stanford tech report rep 2006. http://www-stat.stanford.edu/~tibs/ftp/GSA.pdf

Examples

Run this code
# NOT RUN {
######### two class unpaired comparison
# y must take values 1,2

set.seed(100)
x<-matrix(rnorm(1000*20),ncol=20)
dd<-sample(1:1000,size=100)

u<-matrix(2*rnorm(100),ncol=10,nrow=100)
x[dd,11:20]<-x[dd,11:20]+u
y<-c(rep(1,10),rep(2,10))


genenames=paste("g",1:1000,sep="")

#create some random gene sets
genesets=vector("list",50)
for(i in 1:50){
 genesets[[i]]=paste("g",sample(1:1000,size=30),sep="")
}
geneset.names=paste("set",as.character(1:50),sep="")

GSA.obj<-GSA(x,y, genenames=genenames, genesets=genesets,
             resp.type="Two class unpaired", nperms=100)

# look at 10th gene set

GSA.genescores(10, genesets, GSA.obj, genenames)


# }

Run the code above in your browser using DataLab