
mendelErr(genoData, mendel.list, snp.exclude=NULL, error.by.snp=TRUE, error.by.snp.trio=FALSE, verbose=TRUE)
GenotypeData
object, must have
scan variable "sex"mendelList
object, to specify trios.NULL
(default), all SNPs are used.TRUE
.FALSE
.
NOTE: error.by.snp
must be set to TRUE
as well in order to use this option.
NOTE: Using this option causes the output to be very large that may be slow to load into R.
TRUE
(default), will print status updates while the function runs.mendelErr
returns an object of class "mendelClass".
The object contains two data
frames: "trios" and "all.trios", and a list: "snp" (if error.by.snp
is specified to
be TRUE
). If there are no duplicate samples in the dataset, "trios" will be the same as
"all.trios". Otherwise, "all.trios" contains the results of all combinations of
duplicate samples, and "trios" only stores the average values of unique trios. i.e: "trios" averages duplicate
samples for each unique subject trio.
"trios" and "all.trios" contain the following components:Men.err.cnt
/ Men.cnt
.mtDNA.err
/ mtDNA.cnt
.error.by.snp.trio
is specified to be TRUE
).genoData
must contain the scan annotation variable "sex".
Chromosome index: 1..22 autosomes, 23 X, 24 XY, 25 Y, 26 mtDNA, 27
missing.If a trio has one parent missing, Mendelian errors are still calculated for the available pair. In other words, "trio" here also inludes duos.
mendelList
library(GWASdata)
data(illuminaScanADF)
scanAnnot <- illuminaScanADF
# generate trio list
men.list <- mendelList(scanAnnot$family, scanAnnot$subjectID,
scanAnnot$father, scanAnnot$mother, scanAnnot$sex,
scanAnnot$scanID)
# create genoData object
gdsfile <- system.file("extdata", "illumina_geno.gds", package="GWASdata")
gds <- GdsGenotypeReader(gdsfile)
genoData <- GenotypeData(gds, scanAnnot=scanAnnot)
# Run!
R <- mendelErr(genoData, men.list, error.by.snp.trio = TRUE)
names(R)
# [1] "trios" "all.trios" "snp"
names(R$trios)
# [1] "fam.id" "child.id" "Men.err.cnt" "Men.cnt" "mtDNA.err"
# [6] "mtDNA.cnt" "chr1" "chr2" "chr3" "chr4"
# [11] "chr5" "chr6" "chr7" "chr8" "chr9"
# [16] "chr10" "chr11" "chr12" "chr13" "chr14"
# [21] "chr15" "chr16" "chr17" "chr18" "chr19"
# [26] "chr20" "chr21" "chr22" "chrX" "chrXY"
# [31] "chrY"
# Mendelian error rate = Men.err.cnt / Men.cnt
data.frame(fam.id = R$trios$fam.id, child.id = R$trios$child.id,
Mendel.err.rate = R$trios$Men.err.cnt / R$trios$Men.cnt)
names(R$snp)
summary(R$snp$check.cnt)
# summary Mendelian error for first family
summary(R$snp[[1]])
close(genoData)
Run the code above in your browser using DataLab