Learn R Programming

GWmodel (version 2.4-1)

bw.gtwr: Bandwidth selection for GTWR

Description

A function for automatic bandwidth selection to calibrate a GTWR model

Usage

bw.gtwr(formula, data, obs.tv, approach="CV",kernel="bisquare",adaptive=FALSE, 
        p=2, theta=0, longlat=F,lamda=0.05,t.units = "auto",ksi=0, st.dMat,
        verbose=T)

Value

Returns the adaptive or fixed distance bandwidth

Arguments

formula

Regression model formula of a formula object

data

a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp, or a sf object defined in package sf

obs.tv

a vector of time tags for each observation, which could be numeric or of POSIXlt class

approach

specified by CV for cross-validation approach or by AIC corrected (AICc) approach

kernel

function chosen as follows:

gaussian: wgt = exp(-.5*(vdist/bw)^2);

exponential: wgt = exp(-vdist/bw);

bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;

tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;

boxcar: wgt=1 if dist < bw, wgt=0 otherwise

adaptive

if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)

p

the power of the Minkowski distance, default is 2, i.e. the Euclidean distance

theta

an angle in radians to rotate the coordinate system, default is 0

longlat

if TRUE, great circle distances will be calculated

lamda

an parameter between 0 and 1 for calculating spatio-temporal distance

t.units

character string to define time unit

ksi

an parameter between 0 and PI for calculating spatio-temporal distance, see details in Wu et al. (2014)

st.dMat

a pre-specified spatio-temporal distance matrix

verbose

logical variable to define whether show the selection procedure

Author

Binbin Lu binbinlu@whu.edu.cn

References

Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24, 383-401.

Wu, B., Li, R., & Huang, B. (2014). A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science, 28, 1186-1204.

Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47, 431-452.