A function for automatic bandwidth selection to calibrate a basic GWR model
bw.gwr(formula, data, approach="CV", kernel="bisquare",
adaptive=FALSE, p=2, theta=0, longlat=F, dMat,
parallel.method=F,parallel.arg=NULL)
Returns the adaptive or fixed distance bandwidth
Regression model formula of a formula object
a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp, or a sf object defined in package sf
specified by CV for cross-validation approach or by AIC corrected (AICc) approach
function chosen as follows:
gaussian: wgt = exp(-.5*(vdist/bw)^2);
exponential: wgt = exp(-vdist/bw);
bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise;
tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise;
boxcar: wgt=1 if dist < bw, wgt=0 otherwise
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance)
the power of the Minkowski distance, default is 2, i.e. the Euclidean distance
an angle in radians to rotate the coordinate system, default is 0
if TRUE, great circle distances will be calculated
a pre-specified distance matrix, it can be calculated by the function gw.dist
FALSE as default, and the calibration will be conducted traditionally via the serial technique, "omp": multi-thread technique with the OpenMP API, "cluster": multi-process technique with the parallel package, "cuda": parallel computing technique with CUDA
if parallel.method is not FALSE, then set the argument by following: if parallel.method is "omp", parallel.arg refers to the number of threads used, and its default value is the number of cores - 1; if parallel.method is "cluster", parallel.arg refers to the number of R sessions used, and its default value is the number of cores - 1; if parallel.method is "cuda", parallel.arg refers to the number of calibrations included in each group, but note a too large value may cause the overflow of GPU memory.
Binbin Lu binbinlu@whu.edu.cn