Learn R Programming

GenABEL (version 1.8-0)

VIFGC: Genomic control for various model of inheritance using VIF

Description

This function estimates corrected statistic using genomic control for different models (recessive, dominant, additive etc.), using VIF. VIF coefficients are estimated by optimizing different error functions: regress, median and ks.test.

Usage

VIFGC(data, p, x, method = "regress", n, index.filter = NULL, proportion = 1, clust = 0, vart0 = 0, tmp = 0, CA = FALSE, p.table = 0, plot = TRUE, lmax = NULL, color = "red", F = NULL, K = NULL, type_of_plot = "plot", ladd = NULL)

Arguments

data
Input vector of Chi square statistic
method
Function of error to be optimized. Can be "regress", "median" or "ks.test"
p
Input vector of allele frequencies
x
Model of inheritance (0 for recessive,0.5 for additive, 1 for dominant, also it could be arbitrary)
index.filter
Indexes for variables that will be use for analysis in data vector
n
The size of the sample
proportion
The proportion of lowest P (Chi2) to be used when estimating the inflation factor Lambda for "regress" method only
plot
If TRUE, plot of lambda will be produced
type_of_plot
For developers only
lmax
The threshold for lambda for plotting (optional)
color
The color of the plot
F
The estimation of F (optional)
K
The estimation of K (optional)
ladd
The estimation of lambda for additive model (optional)
clust
For developers only
vart0
For developers only
tmp
For developers only
CA
For developers only
p.table
For developers only

Value

A list with elements
Zx
output vector corrected Chi square statistic
vv
output vector of VIF
exeps
output vector of exepsons (NA)
calrate
output vector of calrate
F
F
K
K

Examples

Run this code
require(GenABEL.data)
data(ge03d2)
# truncate the data to make the example faster
ge03d2 <- ge03d2[seq(from=1,to=nids(ge03d2),by=2),seq(from=1,to=nsnps(ge03d2),by=3)]
qts <- mlreg(dm2~sex,data=ge03d2,gtmode = "dominant")
chi2.1df <- results(qts)$chi2.1df
s <- summary(ge03d2)
freq <- s$Q.2
result <- VIFGC(p=freq,x=1,method = "median",CA=FALSE,data=chi2.1df,n=nids(ge03d2))

Run the code above in your browser using DataLab