Learn R Programming

GeneClusterNet (version 1.0.1)

GeneClusterBIC: Optimal number of Gene Clusters

Description

Given time cousre expressions of $n$ genes, time vector, order of Legendre Polynomials and a range of cluster numbers, e.g. from 1 to 15, the function can identify the optimal number of clusters, which has the smallest BIC value.

Usage

GeneClusterBIC(mExpression, times, G = c(1:15), orderLOP)

Arguments

mExpression
a gene expression matrix with $p$ columns (length of time vector) and $n$ rows ( number of genes).

times
time vector specifies the time points of measurements.

G
range of number of clusters

orderLOP
order of Legendre Polynomials

Value

A plot shows the smallest BIC.

References

Wang, Y., Xu, M., Wang, Z., Tao, M., Zhu, J., Wang, L., et al. (2012). How to cluster gene expression dynamics in response to environmental signals. Briefings in bioinformatics, 13(2), 162-174.

Wang, Y., Berceli, S. A., Garbey, M. and Wu, R. (2016). Inference of gene regulatory network through adaptive dynamic Beyesian networm modeling. Technical Report.

Examples

Run this code
 # load the package 
 library(GeneClusterNet)
 set.seed(1234)
 data(mExpression)
 Sample=mExpression[sample(1:nrow(mExpression),50,replace=FALSE),]
 GeneClusterBIC(Sample, times=c(1:18), G=c(1:5), orderLOP=5)

Run the code above in your browser using DataLab