######
# data oldcol
require("maptools")
example(columbus)
# columbus is included in the Spatial-Class object
# a very simple use of histomap :
densitymap(columbus,"CRIME")
######
# data on price indices of real estate in France
data(immob)
row.names(immob)<-immob$Nom
# immob is a data.frame object. We have to create
# a Spatial object, by using first the longitude and latitude
# to create Spatial Points object ...
immob.sp = SpatialPoints(cbind(immob$longitude,immob$latitude))
# ... and then by integrating other variables to create SpatialPointsDataFrame
immob.spdf = SpatialPointsDataFrame(immob.sp, immob)
# For more details, see vignette('sp', package="sp")
# optional : we add some contours that don't correspond to the spatial unit
# but are nice for mapping
midiP <- readShapePoly(system.file("shapes/region.shp", package="GeoXp")[1])
cont_midiP<-spdf2list(midiP[-c(22,23),])$poly
# A basic call of densitymap function
densitymap(immob.spdf,"prix.vente", carte= cont_midiP, identify=TRUE,
xlab="housing price by square meter", cex.lab=0.6)
Run the code above in your browser using DataLab