# Load candies data
data(candies)
# Basic ASCA model with two factors
mod <- asca(assessment ~ candy + assessor, data=candies)
print(mod)
# ASCA model with interaction
mod <- asca(assessment ~ candy * assessor, data=candies)
print(mod)
# Result plotting for first factor
loadingplot(mod, scatter=TRUE, labels="names")
scoreplot(mod)
# No backprojection
scoreplot(mod, projections=FALSE)
# Spider plot
scoreplot(mod, spider=TRUE, projections=FALSE)
# ASCA model with compressed response using 5 principal components
mod.pca <- asca(assessment ~ candy + assessor, data=candies, pca.in=5)
# Mixed Model ASCA, random assessor
mod.mix <- asca(assessment ~ candy + r(assessor), data=candies)
scoreplot(mod.mix)
# Mixed Model ASCA, REML estimation
mod.mix <- asca(assessment ~ candy + r(assessor), data=candies, REML=TRUE)
scoreplot(mod.mix)
# Load Caldana data
data(caldana)
# Combining effects in ASCA
mod.comb <- asca(compounds ~ time + comb(light + time:light), data=caldana)
summary(mod.comb)
timeplot(mod.comb, factor="light", time="time", comb=2)
# Permutation testing
mod.perm <- asca(assessment ~ candy * assessor, data=candies, permute=TRUE)
summary(mod.perm)
Run the code above in your browser using DataLab