# Load candies data
data(candies)
# Default LiMM-PCA model with two factors and interaction, 5 PCA components
mod <- limmpca(assessment ~ candy*r(assessor), data=candies)
summary(mod)
scoreplot(mod, factor = "candy")
# LiMM-PCA with least squares estimation and 8 PCA components
modLS <- limmpca(assessment ~ candy*r(assessor), data=candies, REML=NULL, pca.in=8)
summary(modLS)
scoreplot(modLS, factor = "candy")
# Load Caldana data
data(caldana)
# Combining effects in LiMM-PCA (assuming light is a random factor)
mod.comb <- limmpca(compounds ~ time + comb(r(light) + r(time:light)), data=caldana, pca.in=8)
summary(mod.comb)
Run the code above in your browser using DataLab