#Example 1: Two-layer HEM with EB prior specification
data(pbrain)
##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2)
ind <- c(1,1,2,2,3,3,1,1,2,2,3,3)
rep <- c(1,2,1,2,1,2,1,2,1,2,1,2)
design <- data.frame(cond,ind,rep)
##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])
##take a subset for a testing purpose;
##use all genes for a practical purpose
pbrain.nor <- pbrain.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#pbrain.eb <- hem.eb.prior(pbrain.nor, n.layer=2, design=design,
# method.var.e="neb", method.var.b="peb")
#fit HEM with two layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose
#pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design,burn.ins=10, n.samples=30,
# method.var.e="neb", method.var.b="peb",
# var.e=pbrain.eb$var.e, var.b=pbrain.eb$var.b)
#Example 2: One-layer HEM with EB prior specification
data(mubcp)
##construct a design matrix
cond <- c(rep(1,6),rep(2,5),rep(3,5),rep(4,5),rep(5,5))
ind <- c(1:6,rep((1:5),4))
design <- data.frame(cond,ind)
##normalization
mubcp.nor <- hem.preproc(mubcp)
##take a subset for a testing purpose;
##use all genes for a practical purpose
mubcp.nor <- mubcp.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#mubcp.eb <- hem.eb.prior(mubcp.nor, n.layer=1, design=design,
# method.var.t="neb")
#fit HEM with two layers of error
#using the small numbers of burn-ins and MCMC samples for a testing purpose;
#but increase the numbers for a practical purpose
#mubcp.hem <- hem(mubcp.nor, n.layer=1, design=design, burn.ins=10, n.samples=30,
# method.var.t="neb", var.t=mubcp.eb$var.t)
Run the code above in your browser using DataLab