data(pbrain)
##construct a design matrix
cond <- c(1,1,1,1,1,1,2,2,2,2,2,2)
ind <- c(1,1,2,2,3,3,1,1,2,2,3,3)
rep <- c(1,2,1,2,1,2,1,2,1,2,1,2)
design <- data.frame(cond,ind,rep)
##normalization
pbrain.nor <- hem.preproc(pbrain[,2:13])
##take a subset for a testing purpose;
##use all genes for a practical purpose
pbrain.nor <- pbrain.nor[1:1000,]
##estimate hyperparameters of variances by LPE
#pbrain.eb <- hem.eb.prior(pbrain.nor, n.layer=2, design=design,
# method.var.e="neb", method.var.b="peb")
##fit HEM with two layers of error
##using the small numbers of burn-ins and MCMC samples for a testing purpose;
##but increase the numbers for a practical purpose
#pbrain.hem <- hem(pbrain.nor, n.layer=2, design=design,burn.ins=10, n.samples=30,
# method.var.e="neb", method.var.b="peb",
# var.e=pbrain.eb$var.e, var.b=pbrain.eb$var.b)
##Estimate FDR based on resampling
#pbrain.fdr <- hem.fdr(pbrain.nor, n.layer=2, design=design,
# hem.out=pbrain.hem, eb.out=pbrain.eb)
Run the code above in your browser using DataLab