# NOT RUN {
## These are based on the Professional Challenges example in ?likert
data(ProfChal)
levels(ProfChal$Subtable)[6] <- "Prof Recog" ## reduce length of label
## See ?print.TwoTrellisColumns for this example using the original ordering
## Order both the plot of the count plot and the percent plot by the
## positive.order of the percent plot.
LikertPercentCountColumns(Question ~ . | Subtable, ProfChal,
layout=c(1,6), scales=list(y=list(relation="free")),
ylab=NULL, between=list(y=0),
strip.left=strip.custom(bg="gray97"), strip=FALSE,
par.strip.text=list(cex=.7),
positive.order=TRUE,
main="Is your job professionally challenging?")
# }
# NOT RUN {
## Retain original order of the Question variable
LikertPercentCountColumns(Question ~ . | Subtable, ProfChal,
layout=c(1,6), scales=list(y=list(relation="free")),
ylab=NULL, between=list(y=0),
strip.left=strip.custom(bg="gray97"), strip=FALSE,
par.strip.text=list(cex=.7),
main="Is your job professionally challenging?")
## Order both the plot of the count plot and the percent plot by the
## positive.order of the percent plot.
## Just the "Employment sector".
LPCCEs <-
LikertPercentCountColumns(Question ~ . ,
ProfChal[ProfChal$Subtable == "Employment sector", -7],
ylab=NULL, between=list(y=0),
par.strip.text=list(cex=.7),
positive.order=TRUE,
main="Is your job professionally challenging?\nEmployment sector",
px=list( ## defaults designed for long QuestionName values
LL=c(.00, .50), ## and 7in x 7in window
LP=c(.49, .70),
ML=c(.50, .51), ## arbitrary, visually center the labels and legend
RP=c(.71, .84),
RL=c(.87, 1.00)))
LPCCEs$RP$x.scales$at <- c(0,100,200)
LPCCEs$RP$x.scales$labels <- c(0,100,200)
LPCCEs
# }
Run the code above in your browser using DataLab