Analysis of Covariance Plots. Any of the ancova models
y ~ x * t
y ~ t * x
y ~ x + t
y ~ t + x
y ~ x , groups=t
y ~ t, x=x
y ~ x * t, groups=b
y ~ t * x, groups=b
y ~ x + t, groups=b
y ~ t + x, groups=b
ancovaplot(object, ...)
# S3 method for formula
ancovaplot(object, data, groups=NULL, x=NULL, ...,
formula=object,
col=rep(tpg$col,
length=length(levels(as.factor(groups)))),
pch=rep(c(15,19,17,18,16,20, 0:14),
length=length(levels(as.factor(groups)))),
slope, intercept,
layout=c(length(levels(cc)), 1),
col.line=col, lty=1,
superpose.panel=TRUE,
between=if (superpose.panel)
list(x=c(rep(0, length(levels(cc))-1), 1))
else
list(x=0),
col.by.groups=FALSE ## ignored unless groups= is specified
)panel.ancova.superpose(x, y, subscripts, groups,
slope, intercept,
col, pch, ...,
col.line, lty,
superpose.panel,
col.by.groups,
condition.factor,
groups.cc.incompatible,
plot.resids=FALSE,
print.resids=FALSE,
mean.x.line=FALSE,
col.mean.x.line="gray80")
formula
specifying the aov
model. The function modifies it for the
xyplot
specification.
data.frame
If the treatment factor is included in the formula
, then groups
is not
needed. By default groups
will be set to the treatment factor, but the
user may specify another factor for groups
, usually a blocking factor. The
pch
will follow the value of groups
. If the treatment
is not included in the formula
, then groups
is required.
Covariate. Required by ancovaplot.formula
if the covariate is
not included in the formula
.
For panel.ancova.superpose
, see panel.superpose
.
Other arguments to be passed to xyplot
.
Standard lattice arguments. pch
follows the value of
groups
. When col.by.groups
is TRUE
, then
col
follow the value of groups
.
When col.by.groups
is FALSE
, then
col
follows the value of the treatment factor, and is constant in
each panel.
Vector, the length of the number of treatment levels, containing slope
and intercept of the abline
in each panel.
This is by default calculated based on the formula. The user may
override each independently.
Standard lattice arguments.
Standard lattice arguments. By default, they follow the value of the
treatment factor in the formula
. col.line
is recycled to
the number of panels in the plot.
See panel.xyplot
.
logical. if TRUE
(the default), there is an additional panel on
the right containing the superposition of the points and lines for all treatment levels.
logical. See the discussion in argument col
.
These are both internal variables. condition.factor
contains a
copy of the treatment factor. groups.cc.incompatible
is a
logical which is set to TRUE
when the groups
argument is
explicitly set by the user.
logical, logical, logical or numeric, color name.
When plot.resids==TRUE
then vertical line segments
connecting the data points and the fitted line are drawn.
The other two arguments are interpreted only when
plot.resids==TRUE
.
When print.resids==TRUE
then the values of the residuals are
printed on the console. When is.numeric(mean.x.line)
then a vertical
reference line is drawn at the specified value, which will normally be
specified by the user as the mean of the full set of x values.
The reference line will have color specified by col.mean.x.line
.
ancovaplot
returns a c("ancova","trellis")
object.
panel.ancova.superpose
is an ordinary lattice panel
function.
ancova=aov specification |
xyplot specification |
abline |
|
y ~ x * t |
y ~ x | t, groups=t |
lm(y[t] ~ x[t]) |
## separate lines |
y ~ t * x |
y ~ x | t, groups=t |
lm(y[t] ~ x[t]) |
## separate lines |
y ~ x + t |
y ~ x | t, groups=t |
lm(y ~ x + t) |
## parallel lines |
y ~ t + x |
y ~ x | t, groups=t |
lm(y ~ x + t) |
## parallel lines |
y ~ x , groups=t |
y ~ x | t, groups=t |
lm(y ~ x) |
## single regression line |
y ~ t, x=x |
y ~ x | t, groups=t |
mean(t) |
## separate horizontal lines |
y ~ x * t, groups=b |
y ~ x | t, groups=b |
lm(y[t] ~ x[t]) |
## sep lines, pch&col follow b |
y ~ t * x, groups=b |
y ~ x | t, groups=b |
lm(y[t] ~ x[t]) |
## sep lines, pch&col follow b |
y ~ x + t, groups=b |
y ~ x | t, groups=b |
lm(y ~ x + t) |
## par lines, pch&col follow b |
Heiberger, Richard M. and Holland, Burt (2015). Statistical Analysis and Data Display: An Intermediate Course with Examples in R. Second Edition. Springer-Verlag, New York. https://link.springer.com/us/book/9781493921218
See the older ancova
.
# NOT RUN {
data(hotdog, package="HH")
ancovaplot(Sodium ~ Calories + Type, data=hotdog)
ancovaplot(Sodium ~ Calories * Type, data=hotdog)
ancovaplot(Sodium ~ Calories, groups=Type, data=hotdog)
ancovaplot(Sodium ~ Type, x=Calories, data=hotdog)
## Please see demo("ancova", package="HH") to coordinate placement
## of all four of these plots on the same page.
ancovaplot(Sodium ~ Calories + Type, data=hotdog, plot.resids=TRUE)
# }
Run the code above in your browser using DataLab