Learn R Programming

HMMcopula (version 1.1.0)

EstMixtureCop: Estimation of bivariate mixture bivariate copula model

Description

Estimation of parameters from a mixture of bivariate copula models

Usage

EstMixtureCop(y, reg, family, max_iter, eps)

Value

theta

(1 x reg) estimated parameter of the copula according to CRAN copula package (except for Frank copula, where theta = log(theta_R_Package)) for each component (except for degrees of freedom)

dof

estimated degree of freedom, only for the Student copula

Q

(1 x reg) estimated weights vector

eta

(n x reg) conditional probabilities of being in regime k at time t given observations up to time t

tau

estimated Kendall tau for each regime

U

(n x 2) matrix of Rosenblatt transforms

cvm

Cramer-von-Mises statistic for goodness-of-fit

Arguments

y

(nx2) data matrix (observations or residuals) that will be transformed to pseudo-observations

reg

number of regimes

family

'gaussian' , 't' , 'clayton' , 'frank' , 'gumbel'

max_iter

maximum number of iterations of the EM algorithm

eps

precision (stopping criteria); suggestion 0.0001.

Author

Mamadou Yamar Thioub and Bruno Remillard, April 12, 2018

References

<doi::10.1002/cjs.11534>