Density function for the generalized Poisson distribution.
Usage
dgenpois(x, lambda1, lambda2)
Value
dgenpois gives the density of the generalized Poisson distribution.
Arguments
x
a vector of (non-negative integer) quantiles
lambda1
a single numeric value for parameter lambda1 with \(lambda1 > 0\)
lambda2
a single numeric value for parameter lambda2 with \(0 \le lamdba2 < 1\).
When lambda2=0, the generalized Poisson distribution
reduces to the Poisson distribution
Author
Based on Joe and Zhu (2005). Implementation by Vitali Witowski (2013).
Details
The generalized Poisson distribution has the density
$$ p(x) = \lambda_1 (\lambda_1 + \lambda_2 \cdot x)^{x-1}
\frac{ \exp(-\lambda_1-\lambda_2 \cdot x) )}{x!}$$
for \(x = 0,1,2,\ldots\),b
with \(\mbox{E}(X)=
\frac{\lambda_1}{1-\lambda_2}\) and variance
\(\mbox{var}(X)=\frac{\lambda_1}{(1-\lambda_2)^3}\).
References
Joe, H., Zhu, R. (2005). Generalized poisson distribution: the property of
mixture of poisson and comparison with negative binomial distribution.
Biometrical Journal 47(2):219--229.
See Also
pgenpois, rgenpois;
Distributions for other standard distributions,
including dpois for the Poisson distribution.