if (FALSE) {
### for a description see http://popcenter.uchicago.edu/data/chfls.shtml
library("TH.data")
load(file.path(path.package(package="TH.data"), "rda", "CHFLS.rda"))
tmp <- chfls1[, c("REGION6", "ZJ05", "ZJ06", "A35", "ZJ07", "ZJ16M", "INCRM",
"JK01", "JK02", "JK20", "HY04", "HY07", "A02", "AGEGAPM",
"A07M", "A14", "A21", "A22M", "A23", "AX16", "INCAM", "SEXNOW", "ZW04")]
names(tmp) <- c("Region",
"Rgender", ### gender of respondent
"Rage", ### age of respondent
"RagestartA", ### age of respondent at beginning of relationship
### with partner A
"Redu", ### education of respondent
"RincomeM", ### rounded monthly income of respondent
"RincomeComp", ### inputed monthly income of respondent
"Rhealth", ### health condition respondent
"Rheight", ### respondent's height
"Rhappy", ### respondent's happiness
"Rmartial", ### respondent's marital status
"RhasA", ### R has current A partner
"Agender", ### gender of partner A
"RAagegap", ### age gap
"RAstartage", ### age at marriage
"Aheight", ### height of partner A
"Aedu", ### education of partner A
"AincomeM", ### rounded partner A income
"AincomeEst", ### estimated partner A income
"orgasm", ### orgasm frequency
"AincomeComp", ### imputed partner A income
"Rsexnow", ### has sex last year
"Rhomosexual") ### R is homosexual
### code missing values
tmp$AincomeM[tmp$AincomeM < 0] <- NA
tmp$RincomeM[tmp$RincomeM < 0] <- NA
tmp$Aheight[tmp$Aheight < 0] <- NA
olevels <- c("never", "rarely", "sometimes", "often", "always")
tmpA <- subset(tmp, Rgender == "female" & Rhomosexual != "yes" & orgasm %in% olevels)
### 1534 subjects
dim(tmpA)
CHFLS <- tmpA[, c("Region", "Rage", "Redu", "RincomeComp", "Rhealth", "Rheight", "Rhappy",
"Aheight", "Aedu", "AincomeComp")]
names(CHFLS) <- c("R_region", "R_age", "R_edu", "R_income", "R_health", "R_height",
"R_happy", "A_height", "A_edu", "A_income")
levels(CHFLS$R_region) <- c("Coastal South", "Coastal Easth", "Inlands", "North",
"Northeast", "Central West")
CHFLS$R_edu <- ordered(as.character(CHFLS$R_edu), levels = c("no school", "primary",
"low mid", "up mid", "j col", "univ/grad"))
levels(CHFLS$R_edu) <- c("Never attended school", "Elementary school", "Junior high school",
"Senior high school", "Junior college", "University")
CHFLS$A_edu <- ordered(as.character(CHFLS$A_edu), levels = c("no school", "primary",
"low mid", "up mid", "j col", "univ/grad"))
levels(CHFLS$A_edu) <- c("Never attended school", "Elementary school", "Junior high school",
"Senior high school", "Junior college", "University")
CHFLS$R_health <- ordered(as.character(CHFLS$R_health), levels = c("poor", "not good",
"fair", "good", "excellent"))
levels(CHFLS$R_health) <- c("Poor", "Not good", "Fair", "Good", "Excellent")
CHFLS$R_happy <- ordered(as.character(CHFLS$R_happy), levels = c("v unhappy", "not too",
"relatively", "very"))
levels(CHFLS$R_happy) <- c("Very unhappy", "Not too happy", "Relatively happy", "Very happy")
}
Run the code above in your browser using DataLab