low_rank(x, ranks = c(rep(NA,3)), sparse = rep(FALSE, 3),
est = rep("wold", 3), add=c(1,0,0),...)
The FIT.SSVD has several input variables that can be adjusted by the user if desired. However, these are currently limited to dothres : 'hard' or 'soft' thresholding; default='hard' n.step : maximum number of iterations in Algorithm 1; default=100 n.err : number of Bootstrap samples in Algorithm 3; default=100
Owen AB, Perry PO (2009) Bi-cross-validation of the SVD and the nonnegative matrix factorization. The Annals of Applied Statistics 3:564-594.
Yang, D., Ma, Z., and Buja, A. (2011) A sparse SVD method for high-dimensional data arXiv:1112.2433.
data(Methylation)
beta_name <- colnames(Methylation)[grep("AVG_Beta",colnames(Methylation))]
ds <- as.matrix(Methylation[beta_name],ncol=length(beta_name))
info <- t(ds)
## The methylation data takes value between [0,1];
## therefore, we do a logit tranformation ##
info <- log(info/(1-info))
result <- low_rank(info,ranks=c(8,4,4))
Run the code above in your browser using DataLab