# NOT RUN {
require(HiClimR)
## Load test case data
x <- TestCase$x
## Generate longitude and latitude mesh vectors
xGrid <- grid2D(lon = unique(TestCase$lon), lat = unique(TestCase$lat))
lon <- c(xGrid$lon)
lat <- c(xGrid$lat)
## Hierarchical Climate Regionalization
y <- HiClimR(x, lon = lon, lat = lat, lonStep = 1, latStep = 1, geogMask = FALSE,
continent = "Africa", meanThresh = 10, varThresh = 0, detrend = TRUE,
standardize = TRUE, nPC = NULL, method = "ward", hybrid = FALSE,
kH = NULL, members = NULL, validClimR = TRUE, k = 12, minSize = 1,
alpha = 0.01, plot = TRUE, colPalette = NULL, hang = -1, labels = FALSE)
## Validtion of Hierarchical Climate Regionalization
z <- validClimR(y, k = 12, minSize = 1, alpha = 0.01, plot = TRUE)
## Use a specified number of clusters (k = 12)
z <- validClimR(y, k = 12, minSize = 1, alpha = 0.01, plot = TRUE)
## Apply minimum cluster size (minSize = 25)
z <- validClimR(y, k = 12, minSize = 25, alpha = 0.01, plot = TRUE)
## The optimal number of clusters, including small clusters
k <- length(z$clustFlag)
## The selected number of clusters, after excluding small clusters (if minSize > 1)
ks <- sum(z$clustFlag)
# }
Run the code above in your browser using DataLab