# NOT RUN {
# Code to produce event history graphs for SIM paper
#
# before generating plots, some pre-processing needs to be performed,
# in order to get dataset in proper form for event.history function;
# need to create one line per subject and sort by time under observation,
# with those experiencing event coming before those tied with censoring time;
require('survival')
data(heart)
# creation of event.history version of heart dataset (call heart.one):
heart.one <- matrix(nrow=length(unique(heart$id)), ncol=8)
for(i in 1:length(unique(heart$id)))
{
if(length(heart$id[heart$id==i]) == 1)
heart.one[i,] <- as.numeric(unlist(heart[heart$id==i, ]))
else if(length(heart$id[heart$id==i]) == 2)
heart.one[i,] <- as.numeric(unlist(heart[heart$id==i,][2,]))
}
heart.one[,3][heart.one[,3] == 0] <- 2 ## converting censored events to 2, from 0
if(is.factor(heart$transplant))
heart.one[,7] <- heart.one[,7] - 1
## getting back to correct transplantation coding
heart.one <- as.data.frame(heart.one[order(unlist(heart.one[,2]), unlist(heart.one[,3])),])
names(heart.one) <- names(heart)
# back to usual censoring indicator:
heart.one[,3][heart.one[,3] == 2] <- 0
# note: transplant says 0 (for no transplants) or 1 (for one transplant)
# and event = 1 is death, while event = 0 is censored
# plot single Kaplan-Meier curve from heart data, first creating survival object
heart.surv <- survfit(Surv(stop, event) ~ 1, data=heart.one, conf.int = FALSE)
# figure 3: traditional Kaplan-Meier curve
# postscript('ehgfig3.ps', horiz=TRUE)
# omi <- par(omi=c(0,1.25,0.5,1.25))
plot(heart.surv, ylab='estimated survival probability',
xlab='observation time (in days)')
title('Figure 3: Kaplan-Meier curve for Stanford data', cex=0.8)
# dev.off()
## now, draw event history graph for Stanford heart data; use as Figure 4
# postscript('ehgfig4.ps', horiz=TRUE, colors = seq(0, 1, len=20))
# par(omi=c(0,1.25,0.5,1.25))
event.history(heart.one,
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation (in days)',
title='Figure 4: Event history graph for\nStanford data',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 30.0, cens.mark.cex = 0.85)
# dev.off()
# now, draw age-stratified event history graph for Stanford heart data;
# use as Figure 5
# two plots, stratified by age status
# postscript('c:\temp\ehgfig5.ps', horiz=TRUE, colors = seq(0, 1, len=20))
# par(omi=c(0,1.25,0.5,1.25))
par(mfrow=c(1,2))
event.history(data=heart.one, subset.rows = (heart.one[,4] < 0),
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation\n(in days)',
title = 'Figure 5a:\nStanford data\n(age < 48)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 40.0, cens.mark.cex = 0.85,
xlim=c(0,1900))
event.history(data=heart.one, subset.rows = (heart.one[,4] >= 0),
survtime.col=heart.one[,2], surv.col=heart.one[,3],
covtime.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,1]),
cov.cols = cbind(rep(0, dim(heart.one)[1]), heart.one[,7]),
num.colors=2, colors=c(6,10),
x.lab = 'time under observation\n(in days)',
title = 'Figure 5b:\nStanford data\n(age >= 48)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 40.0, cens.mark.cex = 0.85,
xlim=c(0,1900))
# dev.off()
# par(omi=omi)
# we will not show liver cirrhosis data manipulation, as it was
# a bit detailed; however, here is the
# event.history code to produce Figure 7 / Plate 1
# Figure 7 / Plate 1 : prothrombin ehg with color
# }
# NOT RUN {
second.arg <- 1 ### second.arg is for shading
third.arg <- c(rep(1,18),0,1) ### third.arg is for intensity
# postscript('c:\temp\ehgfig7.ps', horiz=TRUE,
# colors = cbind(seq(0, 1, len = 20), second.arg, third.arg))
# par(omi=c(0,1.25,0.5,1.25), col=19)
event.history(cirrhos2.eh, subset.rows = NULL,
survtime.col=cirrhos2.eh$time, surv.col=cirrhos2.eh$event,
covtime.cols = as.matrix(cirrhos2.eh[, ((2:18)*2)]),
cov.cols = as.matrix(cirrhos2.eh[, ((2:18)*2) + 1]),
cut.cov = as.numeric(quantile(as.matrix(cirrhos2.eh[, ((2:18)*2) + 1]),
c(0,.2,.4,.6,.8,1), na.rm=TRUE) + c(-1,0,0,0,0,1)),
colors=c(20,4,8,11,14),
x.lab = 'time under observation (in days)',
title='Figure 7: Event history graph for liver cirrhosis data (color)',
cens.mark.right =TRUE, cens.mark = '-',
cens.mark.ahead = 100.0, cens.mark.cex = 0.85)
# dev.off()
# }
Run the code above in your browser using DataLab