# NOT RUN {
# Greate Migraine dataset used in Example 28.6 in the SAS PROC FREQ guide
d <- expand.grid(response=c('Better','Same'),
treatment=c('Active','Placebo'),
sex=c('female','male'))
d$count <- c(16, 11, 5, 20, 12, 16, 7, 19)
d
# Expand data frame to represent raw data
r <- rep(1:8, d$count)
d <- d[r,]
with(d, mhgr(response=='Better', treatment, sex))
# Discrete survival time example, to get Cox-Mantel relative risk and CL
# From Stokes ME, Davis CS, Koch GG, Categorical Data Analysis Using the
# SAS System, 2nd Edition, Sectino 17.3, p. 596-599
#
# Input data in Table 17.5
d <- expand.grid(treatment=c('A','P'), center=1:3)
d$healed2w <- c(15,15,17,12, 7, 3)
d$healed4w <- c(17,17,17,13,17,17)
d$notHealed4w <- c( 2, 7,10,15,16,18)
d
# Reformat to the way most people would collect raw data
d1 <- d[rep(1:6, d$healed2w),]
d1$time <- '2'
d1$y <- 1
d2 <- d[rep(1:6, d$healed4w),]
d2$time <- '4'
d2$y <- 1
d3 <- d[rep(1:6, d$notHealed4w),]
d3$time <- '4'
d3$y <- 0
d <- rbind(d1, d2, d3)
d$healed2w <- d$healed4w <- d$notHealed4w <- NULL
d
# Finally, duplicate appropriate observations to create 2 and 4-week
# risk sets. Healed and not healed at 4w need to be in the 2-week
# risk set as not healed
d2w <- subset(d, time=='4')
d2w$time <- '2'
d2w$y <- 0
d24 <- rbind(d, d2w)
with(d24, table(y, treatment, time, center))
# Matches Table 17.6
with(d24, mhgr(y, treatment, interaction(center, time, sep=';')))
# Get cumulative likelihood ratios and their 0.95 confidence intervals
# based on the following two tables
#
# Disease Disease
# + - + -
# Test + 39 3 20 5
# Test - 21 17 22 15
lrcum(c(39,20), c(3,5), c(21,22), c(17,15))
# }
Run the code above in your browser using DataLab