# NOT RUN {
# See tests directory file summaryS.r for more examples, and summarySp.r
# for plotp examples
n <- 100
set.seed(1)
d <- data.frame(sbp=rnorm(n, 120, 10),
dbp=rnorm(n, 80, 10),
age=rnorm(n, 50, 10),
days=sample(1:n, n, TRUE),
S1=Surv(2*runif(n)), S2=Surv(runif(n)),
race=sample(c('Asian', 'Black/AA', 'White'), n, TRUE),
sex=sample(c('Female', 'Male'), n, TRUE),
treat=sample(c('A', 'B'), n, TRUE),
region=sample(c('North America','Europe'), n, TRUE),
meda=sample(0:1, n, TRUE), medb=sample(0:1, n, TRUE))
d <- upData(d, labels=c(sbp='Systolic BP', dbp='Diastolic BP',
race='Race', sex='Sex', treat='Treatment',
days='Time Since Randomization',
S1='Hospitalization', S2='Re-Operation',
meda='Medication A', medb='Medication B'),
units=c(sbp='mmHg', dbp='mmHg', age='Year', days='Days'))
s <- summaryS(age + sbp + dbp ~ days + region + treat, data=d)
# plot(s) # 3 pages
plot(s, groups='treat', datadensity=TRUE,
scat1d.opts=list(lwd=.5, nhistSpike=0))
plot(s, groups='treat', panel=panel.loess, key=list(space='bottom', columns=2),
datadensity=TRUE, scat1d.opts=list(lwd=.5))
# Make your own plot using data frame created by summaryP
# xyplot(y ~ days | yvar * region, groups=treat, data=s,
# scales=list(y='free', rot=0))
# Use loess to estimate the probability of two different types of events as
# a function of time
s <- summaryS(meda + medb ~ days + treat + region, data=d)
pan <- function(...)
panel.plsmo(..., type='l', label.curves=max(which.packet()) == 1,
datadensity=TRUE)
plot(s, groups='treat', panel=pan, paneldoesgroups=TRUE,
scat1d.opts=list(lwd=.7), cex.strip=.8)
# Repeat using intervals instead of nonparametric smoother
pan <- function(...) # really need mobs > 96 to est. proportion
panel.plsmo(..., type='l', label.curves=max(which.packet()) == 1,
method='intervals', mobs=5)
plot(s, groups='treat', panel=pan, paneldoesgroups=TRUE, xlim=c(0, 150))
# Demonstrate dot charts of summary statistics
s <- summaryS(age + sbp + dbp ~ region + treat, data=d, fun=mean)
plot(s)
plot(s, groups='treat', funlabel=expression(bar(X)))
# Compute parametric confidence limits for mean, and include sample
# sizes by naming a column "n"
f <- function(x) {
x <- x[! is.na(x)]
c(smean.cl.normal(x, na.rm=FALSE), n=length(x))
}
s <- summaryS(age + sbp + dbp ~ region + treat, data=d, fun=f)
plot(s, funlabel=expression(bar(X) %+-% t[0.975] %*% s))
plot(s, groups='treat', cex.values=.65,
key=list(space='bottom', columns=2,
text=c('Treatment A:','Treatment B:')))
# For discrete time, plot Harrell-Davis quantiles of y variables across
# time using different line characteristics to distinguish quantiles
d <- upData(d, days=round(days / 30) * 30)
g <- function(y) {
probs <- c(0.05, 0.125, 0.25, 0.375)
probs <- sort(c(probs, 1 - probs))
y <- y[! is.na(y)]
w <- hdquantile(y, probs)
m <- hdquantile(y, 0.5, se=TRUE)
se <- as.numeric(attr(m, 'se'))
c(Median=as.numeric(m), w, se=se, n=length(y))
}
s <- summaryS(sbp + dbp ~ days + region, fun=g, data=d)
plot(s, panel=mbarclPanel)
plot(s, groups='region', panel=mbarclPanel, paneldoesgroups=TRUE)
# For discrete time, plot median y vs x along with CL for difference,
# using Harrell-Davis median estimator and its s.e., and use violin
# plots
s <- summaryS(sbp + dbp ~ days + region, data=d)
plot(s, groups='region', panel=medvPanel, paneldoesgroups=TRUE)
# Proportions and Wilson confidence limits, plus approx. Gaussian
# based half/width confidence limits for difference in probabilities
g <- function(y) {
y <- y[!is.na(y)]
n <- length(y)
p <- mean(y)
se <- sqrt(p * (1. - p) / n)
structure(c(binconf(sum(y), n), se=se, n=n),
names=c('Proportion', 'Lower', 'Upper', 'se', 'n'))
}
s <- summaryS(meda + medb ~ days + region, fun=g, data=d)
plot(s, groups='region', panel=mbarclPanel, paneldoesgroups=TRUE)
# }
Run the code above in your browser using DataLab